Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. See also 2mo2 . (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | 2mo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2mo2 | |
|
2 | nfmo1 | |
|
3 | nfe1 | |
|
4 | 3 | nfmov | |
5 | 2 4 | nfan | |
6 | nfe1 | |
|
7 | 6 | nfmov | |
8 | nfmo1 | |
|
9 | 7 8 | nfan | |
10 | 19.8a | |
|
11 | spsbe | |
|
12 | 11 | sbimi | |
13 | nfv | |
|
14 | 13 | mo3 | |
15 | 14 | biimpi | |
16 | 15 | 19.21bbi | |
17 | 10 12 16 | syl2ani | |
18 | 19.8a | |
|
19 | sbcom2 | |
|
20 | spsbe | |
|
21 | 20 | sbimi | |
22 | 19 21 | sylbi | |
23 | nfv | |
|
24 | 23 | mo3 | |
25 | 24 | biimpi | |
26 | 25 | 19.21bbi | |
27 | 18 22 26 | syl2ani | |
28 | 17 27 | anim12ii | |
29 | 9 28 | alrimi | |
30 | 5 29 | alrimi | |
31 | 30 | alrimivv | |
32 | 1 31 | sylbir | |
33 | nfs1v | |
|
34 | nfs1v | |
|
35 | 34 | nfsbv | |
36 | pm3.21 | |
|
37 | 36 | imim1d | |
38 | 35 37 | alimd | |
39 | 33 38 | alimd | |
40 | 39 | com12 | |
41 | 40 | aleximi | |
42 | 41 | aleximi | |
43 | 2nexaln | |
|
44 | nfv | |
|
45 | nfv | |
|
46 | 44 45 | 2sb8ef | |
47 | 43 46 | xchnxbi | |
48 | pm2.21 | |
|
49 | 48 | 2alimi | |
50 | 49 | 2eximi | |
51 | 50 | 19.23bi | |
52 | 51 | 19.23bi | |
53 | 47 52 | sylbi | |
54 | 42 53 | pm2.61d1 | |
55 | 32 54 | impbii | |
56 | alrot4 | |
|
57 | 55 56 | bitri | |