Metamath Proof Explorer


Theorem 2mo

Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. See also 2mo2 . (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Nov-2019)

Ref Expression
Assertion 2mo zwxyφx=zy=wxyzwφzxwyφx=zy=w

Proof

Step Hyp Ref Expression
1 2mo2 *xyφ*yxφzwxyφx=zy=w
2 nfmo1 x*xyφ
3 nfe1 xxφ
4 3 nfmov x*yxφ
5 2 4 nfan x*xyφ*yxφ
6 nfe1 yyφ
7 6 nfmov y*xyφ
8 nfmo1 y*yxφ
9 7 8 nfan y*xyφ*yxφ
10 19.8a φyφ
11 spsbe wyφyφ
12 11 sbimi zxwyφzxyφ
13 nfv zyφ
14 13 mo3 *xyφxzyφzxyφx=z
15 14 biimpi *xyφxzyφzxyφx=z
16 15 19.21bbi *xyφyφzxyφx=z
17 10 12 16 syl2ani *xyφφzxwyφx=z
18 19.8a φxφ
19 sbcom2 zxwyφwyzxφ
20 spsbe zxφxφ
21 20 sbimi wyzxφwyxφ
22 19 21 sylbi zxwyφwyxφ
23 nfv wxφ
24 23 mo3 *yxφywxφwyxφy=w
25 24 biimpi *yxφywxφwyxφy=w
26 25 19.21bbi *yxφxφwyxφy=w
27 18 22 26 syl2ani *yxφφzxwyφy=w
28 17 27 anim12ii *xyφ*yxφφzxwyφx=zy=w
29 9 28 alrimi *xyφ*yxφyφzxwyφx=zy=w
30 5 29 alrimi *xyφ*yxφxyφzxwyφx=zy=w
31 30 alrimivv *xyφ*yxφzwxyφzxwyφx=zy=w
32 1 31 sylbir zwxyφx=zy=wzwxyφzxwyφx=zy=w
33 nfs1v xzxwyφ
34 nfs1v ywyφ
35 34 nfsbv yzxwyφ
36 pm3.21 zxwyφφφzxwyφ
37 36 imim1d zxwyφφzxwyφx=zy=wφx=zy=w
38 35 37 alimd zxwyφyφzxwyφx=zy=wyφx=zy=w
39 33 38 alimd zxwyφxyφzxwyφx=zy=wxyφx=zy=w
40 39 com12 xyφzxwyφx=zy=wzxwyφxyφx=zy=w
41 40 aleximi wxyφzxwyφx=zy=wwzxwyφwxyφx=zy=w
42 41 aleximi zwxyφzxwyφx=zy=wzwzxwyφzwxyφx=zy=w
43 2nexaln ¬xyφxy¬φ
44 nfv wφ
45 nfv zφ
46 44 45 2sb8ef xyφzwzxwyφ
47 43 46 xchnxbi ¬zwzxwyφxy¬φ
48 pm2.21 ¬φφx=zy=w
49 48 2alimi xy¬φxyφx=zy=w
50 49 2eximi zwxy¬φzwxyφx=zy=w
51 50 19.23bi wxy¬φzwxyφx=zy=w
52 51 19.23bi xy¬φzwxyφx=zy=w
53 47 52 sylbi ¬zwzxwyφzwxyφx=zy=w
54 42 53 pm2.61d1 zwxyφzxwyφx=zy=wzwxyφx=zy=w
55 32 54 impbii zwxyφx=zy=wzwxyφzxwyφx=zy=w
56 alrot4 zwxyφzxwyφx=zy=wxyzwφzxwyφx=zy=w
57 55 56 bitri zwxyφx=zy=wxyzwφzxwyφx=zy=w