Metamath Proof Explorer


Theorem mo3

Description: Alternate definition of the at-most-one quantifier. Definition of BellMachover p. 460, except that definition has the side condition that y not occur in ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995) (Proof shortened by Wolf Lammen, 18-Aug-2019) Remove dependency on ax-13 . (Revised by BJ and WL, 29-Jan-2023)

Ref Expression
Hypothesis mo3.nf yφ
Assertion mo3 *xφxyφyxφx=y

Proof

Step Hyp Ref Expression
1 mo3.nf yφ
2 nfmo1 x*xφ
3 1 nfmov y*xφ
4 df-mo *xφzxφx=z
5 sp xφx=zφx=z
6 spsbim xφx=zyxφyxx=z
7 equsb3 yxx=zy=z
8 6 7 imbitrdi xφx=zyxφy=z
9 5 8 anim12d xφx=zφyxφx=zy=z
10 equtr2 x=zy=zx=y
11 9 10 syl6 xφx=zφyxφx=y
12 11 exlimiv zxφx=zφyxφx=y
13 4 12 sylbi *xφφyxφx=y
14 3 13 alrimi *xφyφyxφx=y
15 2 14 alrimi *xφxyφyxφx=y
16 nfs1v xyxφ
17 pm3.21 yxφφφyxφ
18 17 imim1d yxφφyxφx=yφx=y
19 16 18 alimd yxφxφyxφx=yxφx=y
20 19 com12 xφyxφx=yyxφxφx=y
21 20 aleximi yxφyxφx=yyyxφyxφx=y
22 1 sb8ef xφyyxφ
23 1 mof *xφyxφx=y
24 21 22 23 3imtr4g yxφyxφx=yxφ*xφ
25 moabs *xφxφ*xφ
26 24 25 sylibr yxφyxφx=y*xφ
27 26 alcoms xyφyxφx=y*xφ
28 15 27 impbii *xφxyφyxφx=y