Metamath Proof Explorer


Theorem 2mo2

Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. Note that this is not equivalent to E* x E* y ph . See also 2mo . This is the analogue of 2eu4 for existential uniqueness. (Contributed by Wolf Lammen, 26-Oct-2019) Reduce dependencies on axioms. (Revised by Wolf Lammen, 3-Jan-2023)

Ref Expression
Assertion 2mo2 *xyφ*yxφzwxyφx=zy=w

Proof

Step Hyp Ref Expression
1 exdistrv zwxyφx=zyxφy=wzxyφx=zwyxφy=w
2 jcab φx=zy=wφx=zφy=w
3 2 2albii xyφx=zy=wxyφx=zφy=w
4 19.26-2 xyφx=zφy=wxyφx=zxyφy=w
5 19.23v yφx=zyφx=z
6 5 albii xyφx=zxyφx=z
7 alcom xyφy=wyxφy=w
8 19.23v xφy=wxφy=w
9 8 albii yxφy=wyxφy=w
10 7 9 bitri xyφy=wyxφy=w
11 6 10 anbi12i xyφx=zxyφy=wxyφx=zyxφy=w
12 3 4 11 3bitri xyφx=zy=wxyφx=zyxφy=w
13 12 2exbii zwxyφx=zy=wzwxyφx=zyxφy=w
14 df-mo *xyφzxyφx=z
15 df-mo *yxφwyxφy=w
16 14 15 anbi12i *xyφ*yxφzxyφx=zwyxφy=w
17 1 13 16 3bitr4ri *xyφ*yxφzwxyφx=zy=w