| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							exdistrv | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							jcab | 
							⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							2albii | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							19.26-2 | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							19.23v | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							albii | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							alcom | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							19.23v | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							bitri | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							anbi12i | 
							⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 12 | 
							
								3 4 11
							 | 
							3bitri | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							2exbii | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-mo | 
							⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							df-mo | 
							⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑  ↔  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							anbi12i | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  ↔  ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑  →  𝑦  =  𝑤 ) ) )  | 
						
						
							| 17 | 
							
								1 13 16
							 | 
							3bitr4ri | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  |