Metamath Proof Explorer


Theorem 2eu4

Description: This theorem provides us with a definition of double existential uniqueness ("exactly one x and exactly one y "). Naively one might think (incorrectly) that it could be defined by E! x E! y ph . See 2eu1 for a condition under which the naive definition holds and 2exeu for a one-way implication. See 2eu5 and 2eu8 for alternate definitions. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 14-Sep-2019)

Ref Expression
Assertion 2eu4 ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥𝑦 𝜑 ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) )
2 df-eu ( ∃! 𝑦𝑥 𝜑 ↔ ( ∃ 𝑦𝑥 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) )
3 excom ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
4 3 anbi1i ( ( ∃ 𝑦𝑥 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) )
5 2 4 bitri ( ∃! 𝑦𝑥 𝜑 ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) )
6 1 5 anbi12i ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ( ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) ∧ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ) )
7 anandi ( ( ∃ 𝑥𝑦 𝜑 ∧ ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ) ↔ ( ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) ∧ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ) )
8 2mo2 ( ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ↔ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )
9 8 anbi2i ( ( ∃ 𝑥𝑦 𝜑 ∧ ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) )
10 6 7 9 3bitr2i ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) )