Metamath Proof Explorer


Theorem 2sb8ef

Description: An equivalent expression for double existence. Version of 2sb8e with more disjoint variable conditions, not requiring ax-13 . (Contributed by Wolf Lammen, 28-Jan-2023)

Ref Expression
Hypotheses 2sb8ef.1 wφ
2sb8ef.2 zφ
Assertion 2sb8ef xyφzwzxwyφ

Proof

Step Hyp Ref Expression
1 2sb8ef.1 wφ
2 2sb8ef.2 zφ
3 1 sb8ef yφwwyφ
4 3 exbii xyφxwwyφ
5 excom xwwyφwxwyφ
6 4 5 bitri xyφwxwyφ
7 2 nfsbv zwyφ
8 7 sb8ef xwyφzzxwyφ
9 8 exbii wxwyφwzzxwyφ
10 excom wzzxwyφzwzxwyφ
11 6 9 10 3bitri xyφzwzxwyφ