| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbrim.1 |
|- F/ x ph |
| 2 |
|
bi2.04 |
|- ( ( x = t -> ( ph -> ps ) ) <-> ( ph -> ( x = t -> ps ) ) ) |
| 3 |
2
|
albii |
|- ( A. x ( x = t -> ( ph -> ps ) ) <-> A. x ( ph -> ( x = t -> ps ) ) ) |
| 4 |
1
|
19.21 |
|- ( A. x ( ph -> ( x = t -> ps ) ) <-> ( ph -> A. x ( x = t -> ps ) ) ) |
| 5 |
3 4
|
bitri |
|- ( A. x ( x = t -> ( ph -> ps ) ) <-> ( ph -> A. x ( x = t -> ps ) ) ) |
| 6 |
5
|
imbi2i |
|- ( ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> ( t = y -> ( ph -> A. x ( x = t -> ps ) ) ) ) |
| 7 |
|
bi2.04 |
|- ( ( t = y -> ( ph -> A. x ( x = t -> ps ) ) ) <-> ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 8 |
6 7
|
bitri |
|- ( ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 9 |
8
|
albii |
|- ( A. t ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 10 |
|
df-sb |
|- ( [ y / x ] ( ph -> ps ) <-> A. t ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) ) |
| 11 |
|
df-sb |
|- ( [ y / x ] ps <-> A. t ( t = y -> A. x ( x = t -> ps ) ) ) |
| 12 |
11
|
imbi2i |
|- ( ( ph -> [ y / x ] ps ) <-> ( ph -> A. t ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 13 |
|
19.21v |
|- ( A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) <-> ( ph -> A. t ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 14 |
12 13
|
bitr4i |
|- ( ( ph -> [ y / x ] ps ) <-> A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 15 |
9 10 14
|
3bitr4i |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |