Metamath Proof Explorer


Theorem 2ndctop

Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 2ndctop
|- ( J e. 2ndc -> J e. Top )

Proof

Step Hyp Ref Expression
1 is2ndc
 |-  ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) )
2 simprr
 |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J )
3 tgcl
 |-  ( x e. TopBases -> ( topGen ` x ) e. Top )
4 3 adantr
 |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top )
5 2 4 eqeltrrd
 |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> J e. Top )
6 5 rexlimiva
 |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. Top )
7 1 6 sylbi
 |-  ( J e. 2ndc -> J e. Top )