Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
|- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
2 |
|
simprr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) |
3 |
|
tgcl |
|- ( x e. TopBases -> ( topGen ` x ) e. Top ) |
4 |
3
|
adantr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) |
5 |
2 4
|
eqeltrrd |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> J e. Top ) |
6 |
5
|
rexlimiva |
|- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. Top ) |
7 |
1 6
|
sylbi |
|- ( J e. 2ndc -> J e. Top ) |