Metamath Proof Explorer


Theorem 2ndctop

Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 2ndctop J2nd𝜔JTop

Proof

Step Hyp Ref Expression
1 is2ndc J2nd𝜔xTopBasesxωtopGenx=J
2 simprr xTopBasesxωtopGenx=JtopGenx=J
3 tgcl xTopBasestopGenxTop
4 3 adantr xTopBasesxωtopGenx=JtopGenxTop
5 2 4 eqeltrrd xTopBasesxωtopGenx=JJTop
6 5 rexlimiva xTopBasesxωtopGenx=JJTop
7 1 6 sylbi J2nd𝜔JTop