Metamath Proof Explorer


Theorem is2ndc

Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion is2ndc J 2 nd 𝜔 x TopBases x ω topGen x = J

Proof

Step Hyp Ref Expression
1 df-2ndc 2 nd 𝜔 = j | x TopBases x ω topGen x = j
2 1 eleq2i J 2 nd 𝜔 J j | x TopBases x ω topGen x = j
3 simpr x ω topGen x = J topGen x = J
4 fvex topGen x V
5 3 4 eqeltrrdi x ω topGen x = J J V
6 5 rexlimivw x TopBases x ω topGen x = J J V
7 eqeq2 j = J topGen x = j topGen x = J
8 7 anbi2d j = J x ω topGen x = j x ω topGen x = J
9 8 rexbidv j = J x TopBases x ω topGen x = j x TopBases x ω topGen x = J
10 6 9 elab3 J j | x TopBases x ω topGen x = j x TopBases x ω topGen x = J
11 2 10 bitri J 2 nd 𝜔 x TopBases x ω topGen x = J