Metamath Proof Explorer


Theorem 2pmaplubN

Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses sspmaplub.u
|- U = ( lub ` K )
sspmaplub.a
|- A = ( Atoms ` K )
sspmaplub.m
|- M = ( pmap ` K )
Assertion 2pmaplubN
|- ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` S ) ) )

Proof

Step Hyp Ref Expression
1 sspmaplub.u
 |-  U = ( lub ` K )
2 sspmaplub.a
 |-  A = ( Atoms ` K )
3 sspmaplub.m
 |-  M = ( pmap ` K )
4 eqid
 |-  ( _|_P ` K ) = ( _|_P ` K )
5 1 2 3 4 2polvalN
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` S ) ) )
6 5 fveq2d
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) = ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) )
7 6 fveq2d
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) )
8 2 4 polssatN
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` S ) C_ A )
9 2 4 3polN
 |-  ( ( K e. HL /\ ( ( _|_P ` K ) ` S ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )
10 8 9 syldan
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )
11 7 10 eqtr3d
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )
12 hlclat
 |-  ( K e. HL -> K e. CLat )
13 eqid
 |-  ( Base ` K ) = ( Base ` K )
14 13 2 atssbase
 |-  A C_ ( Base ` K )
15 sstr
 |-  ( ( S C_ A /\ A C_ ( Base ` K ) ) -> S C_ ( Base ` K ) )
16 14 15 mpan2
 |-  ( S C_ A -> S C_ ( Base ` K ) )
17 13 1 clatlubcl
 |-  ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( U ` S ) e. ( Base ` K ) )
18 12 16 17 syl2an
 |-  ( ( K e. HL /\ S C_ A ) -> ( U ` S ) e. ( Base ` K ) )
19 13 2 3 pmapssat
 |-  ( ( K e. HL /\ ( U ` S ) e. ( Base ` K ) ) -> ( M ` ( U ` S ) ) C_ A )
20 18 19 syldan
 |-  ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` S ) ) C_ A )
21 1 2 3 4 2polvalN
 |-  ( ( K e. HL /\ ( M ` ( U ` S ) ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )
22 20 21 syldan
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )
23 11 22 eqtr3d
 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )
24 23 5 eqtr3d
 |-  ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` S ) ) )