| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspmaplub.u |
|- U = ( lub ` K ) |
| 2 |
|
sspmaplub.a |
|- A = ( Atoms ` K ) |
| 3 |
|
sspmaplub.m |
|- M = ( pmap ` K ) |
| 4 |
|
eqid |
|- ( _|_P ` K ) = ( _|_P ` K ) |
| 5 |
1 2 3 4
|
2polvalN |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` S ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) = ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) |
| 7 |
6
|
fveq2d |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) ) |
| 8 |
2 4
|
polssatN |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` S ) C_ A ) |
| 9 |
2 4
|
3polN |
|- ( ( K e. HL /\ ( ( _|_P ` K ) ` S ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) |
| 10 |
8 9
|
syldan |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) |
| 11 |
7 10
|
eqtr3d |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) |
| 12 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 14 |
13 2
|
atssbase |
|- A C_ ( Base ` K ) |
| 15 |
|
sstr |
|- ( ( S C_ A /\ A C_ ( Base ` K ) ) -> S C_ ( Base ` K ) ) |
| 16 |
14 15
|
mpan2 |
|- ( S C_ A -> S C_ ( Base ` K ) ) |
| 17 |
13 1
|
clatlubcl |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( U ` S ) e. ( Base ` K ) ) |
| 18 |
12 16 17
|
syl2an |
|- ( ( K e. HL /\ S C_ A ) -> ( U ` S ) e. ( Base ` K ) ) |
| 19 |
13 2 3
|
pmapssat |
|- ( ( K e. HL /\ ( U ` S ) e. ( Base ` K ) ) -> ( M ` ( U ` S ) ) C_ A ) |
| 20 |
18 19
|
syldan |
|- ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` S ) ) C_ A ) |
| 21 |
1 2 3 4
|
2polvalN |
|- ( ( K e. HL /\ ( M ` ( U ` S ) ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) ) |
| 22 |
20 21
|
syldan |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) ) |
| 23 |
11 22
|
eqtr3d |
|- ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) ) |
| 24 |
23 5
|
eqtr3d |
|- ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` S ) ) ) |