Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
2 |
1
|
sqcld |
|- ( A e. NN0 -> ( A ^ 2 ) e. CC ) |
3 |
2
|
3ad2ant1 |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( A ^ 2 ) e. CC ) |
4 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
5 |
4
|
sqcld |
|- ( B e. NN0 -> ( B ^ 2 ) e. CC ) |
6 |
5
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( B ^ 2 ) e. CC ) |
7 |
|
nn0cn |
|- ( C e. NN0 -> C e. CC ) |
8 |
7
|
sqcld |
|- ( C e. NN0 -> ( C ^ 2 ) e. CC ) |
9 |
8
|
3ad2ant3 |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( C ^ 2 ) e. CC ) |
10 |
3 6 9
|
addcand |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) <-> ( B ^ 2 ) = ( C ^ 2 ) ) ) |
11 |
|
nn0sq11 |
|- ( ( B e. NN0 /\ C e. NN0 ) -> ( ( B ^ 2 ) = ( C ^ 2 ) <-> B = C ) ) |
12 |
11
|
biimpd |
|- ( ( B e. NN0 /\ C e. NN0 ) -> ( ( B ^ 2 ) = ( C ^ 2 ) -> B = C ) ) |
13 |
12
|
3adant1 |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( B ^ 2 ) = ( C ^ 2 ) -> B = C ) ) |
14 |
10 13
|
sylbid |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) -> B = C ) ) |