Description: Lemma 2 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqreulem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn | |
|
2 | 1 | sqcld | |
3 | 2 | 3ad2ant1 | |
4 | nn0cn | |
|
5 | 4 | sqcld | |
6 | 5 | 3ad2ant2 | |
7 | nn0cn | |
|
8 | 7 | sqcld | |
9 | 8 | 3ad2ant3 | |
10 | 3 6 9 | addcand | |
11 | nn0sq11 | |
|
12 | 11 | biimpd | |
13 | 12 | 3adant1 | |
14 | 10 13 | sylbid | |