Metamath Proof Explorer


Theorem 2sqreulem2

Description: Lemma 2 for 2sqreu etc. (Contributed by AV, 25-Jun-2023)

Ref Expression
Assertion 2sqreulem2 A0B0C0A2+B2=A2+C2B=C

Proof

Step Hyp Ref Expression
1 nn0cn A0A
2 1 sqcld A0A2
3 2 3ad2ant1 A0B0C0A2
4 nn0cn B0B
5 4 sqcld B0B2
6 5 3ad2ant2 A0B0C0B2
7 nn0cn C0C
8 7 sqcld C0C2
9 8 3ad2ant3 A0B0C0C2
10 3 6 9 addcand A0B0C0A2+B2=A2+C2B2=C2
11 nn0sq11 B0C0B2=C2B=C
12 11 biimpd B0C0B2=C2B=C
13 12 3adant1 A0B0C0B2=C2B=C
14 10 13 sylbid A0B0C0A2+B2=A2+C2B=C