Metamath Proof Explorer


Theorem 2sqreunnlem2

Description: Lemma 2 for 2sqreunn . (Contributed by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreulem4.1
|- ( ph <-> ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) )
Assertion 2sqreunnlem2
|- A. a e. NN E* b e. NN ph

Proof

Step Hyp Ref Expression
1 2sqreulem4.1
 |-  ( ph <-> ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) )
2 nnssnn0
 |-  NN C_ NN0
3 1 2sqreulem4
 |-  A. a e. NN0 E* b e. NN0 ph
4 nfcv
 |-  F/_ b NN
5 nfcv
 |-  F/_ b NN0
6 4 5 ssrmof
 |-  ( NN C_ NN0 -> ( E* b e. NN0 ph -> E* b e. NN ph ) )
7 6 ralimdv
 |-  ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN0 ph -> A. a e. NN0 E* b e. NN ph ) )
8 2 3 7 mp2
 |-  A. a e. NN0 E* b e. NN ph
9 ssralv
 |-  ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN ph -> A. a e. NN E* b e. NN ph ) )
10 2 8 9 mp2
 |-  A. a e. NN E* b e. NN ph