| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqreulem4.1 |
|- ( ph <-> ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
| 2 |
|
nnssnn0 |
|- NN C_ NN0 |
| 3 |
1
|
2sqreulem4 |
|- A. a e. NN0 E* b e. NN0 ph |
| 4 |
|
nfcv |
|- F/_ b NN |
| 5 |
|
nfcv |
|- F/_ b NN0 |
| 6 |
4 5
|
ssrmof |
|- ( NN C_ NN0 -> ( E* b e. NN0 ph -> E* b e. NN ph ) ) |
| 7 |
6
|
ralimdv |
|- ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN0 ph -> A. a e. NN0 E* b e. NN ph ) ) |
| 8 |
2 3 7
|
mp2 |
|- A. a e. NN0 E* b e. NN ph |
| 9 |
|
ssralv |
|- ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN ph -> A. a e. NN E* b e. NN ph ) ) |
| 10 |
2 8 9
|
mp2 |
|- A. a e. NN E* b e. NN ph |