Metamath Proof Explorer


Theorem 2sqreunnlem2

Description: Lemma 2 for 2sqreunn . (Contributed by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreulem4.1 ( 𝜑 ↔ ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) )
Assertion 2sqreunnlem2 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑

Proof

Step Hyp Ref Expression
1 2sqreulem4.1 ( 𝜑 ↔ ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) )
2 nnssnn0 ℕ ⊆ ℕ0
3 1 2sqreulem4 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ0 𝜑
4 nfcv 𝑏
5 nfcv 𝑏0
6 4 5 ssrmof ( ℕ ⊆ ℕ0 → ( ∃* 𝑏 ∈ ℕ0 𝜑 → ∃* 𝑏 ∈ ℕ 𝜑 ) )
7 6 ralimdv ( ℕ ⊆ ℕ0 → ( ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ0 𝜑 → ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑 ) )
8 2 3 7 mp2 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑
9 ssralv ( ℕ ⊆ ℕ0 → ( ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑 → ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 ) )
10 2 8 9 mp2 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑