Description: Lemma 2 for 2sqreunn . (Contributed by AV, 25-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2sqreulem4.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) | |
| Assertion | 2sqreunnlem2 | ⊢ ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sqreulem4.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) | |
| 2 | nnssnn0 | ⊢ ℕ ⊆ ℕ0 | |
| 3 | 1 | 2sqreulem4 | ⊢ ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ0 𝜑 |
| 4 | nfcv | ⊢ Ⅎ 𝑏 ℕ | |
| 5 | nfcv | ⊢ Ⅎ 𝑏 ℕ0 | |
| 6 | 4 5 | ssrmof | ⊢ ( ℕ ⊆ ℕ0 → ( ∃* 𝑏 ∈ ℕ0 𝜑 → ∃* 𝑏 ∈ ℕ 𝜑 ) ) |
| 7 | 6 | ralimdv | ⊢ ( ℕ ⊆ ℕ0 → ( ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ0 𝜑 → ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑 ) ) |
| 8 | 2 3 7 | mp2 | ⊢ ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑 |
| 9 | ssralv | ⊢ ( ℕ ⊆ ℕ0 → ( ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ 𝜑 → ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 ) ) | |
| 10 | 2 8 9 | mp2 | ⊢ ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 |