Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreulem4.1 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
|
2sqreulem3 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) → ( ( ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) → 𝑏 = 𝑐 ) ) |
3 |
2
|
ralrimivva |
⊢ ( 𝑎 ∈ ℕ0 → ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ( ( ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) → 𝑏 = 𝑐 ) ) |
4 |
1
|
rmobii |
⊢ ( ∃* 𝑏 ∈ ℕ0 𝜑 ↔ ∃* 𝑏 ∈ ℕ0 ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑏 ℕ0 |
6 |
|
nfcv |
⊢ Ⅎ 𝑐 ℕ0 |
7 |
|
nfsbc1v |
⊢ Ⅎ 𝑏 [ 𝑐 / 𝑏 ] 𝜓 |
8 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑏 ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) |
10 |
|
sbceq1a |
⊢ ( 𝑏 = 𝑐 → ( 𝜓 ↔ [ 𝑐 / 𝑏 ] 𝜓 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑏 = 𝑐 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) ) |
15 |
5 6 9 14
|
rmo4f |
⊢ ( ∃* 𝑏 ∈ ℕ0 ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ( ( ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) → 𝑏 = 𝑐 ) ) |
16 |
4 15
|
bitri |
⊢ ( ∃* 𝑏 ∈ ℕ0 𝜑 ↔ ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ( ( ( 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ( [ 𝑐 / 𝑏 ] 𝜓 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = 𝑃 ) ) → 𝑏 = 𝑐 ) ) |
17 |
3 16
|
sylibr |
⊢ ( 𝑎 ∈ ℕ0 → ∃* 𝑏 ∈ ℕ0 𝜑 ) |
18 |
17
|
rgen |
⊢ ∀ 𝑎 ∈ ℕ0 ∃* 𝑏 ∈ ℕ0 𝜑 |