Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| Assertion | 2wlkdlem1 | |- ( # ` P ) = ( ( # ` F ) + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 1 | fveq2i | |- ( # ` P ) = ( # ` <" A B C "> ) |
| 4 | s3len | |- ( # ` <" A B C "> ) = 3 |
|
| 5 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 6 | 4 5 | eqtri | |- ( # ` <" A B C "> ) = ( 2 + 1 ) |
| 7 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) |
| 8 | s2len | |- ( # ` <" J K "> ) = 2 |
|
| 9 | 7 8 | eqtr2i | |- 2 = ( # ` F ) |
| 10 | 9 | oveq1i | |- ( 2 + 1 ) = ( ( # ` F ) + 1 ) |
| 11 | 6 10 | eqtri | |- ( # ` <" A B C "> ) = ( ( # ` F ) + 1 ) |
| 12 | 3 11 | eqtri | |- ( # ` P ) = ( ( # ` F ) + 1 ) |