Metamath Proof Explorer


Theorem 2wlkdlem1

Description: Lemma 1 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
Assertion 2wlkdlem1 P=F+1

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 1 fveq2i P=⟨“ABC”⟩
4 s3len ⟨“ABC”⟩=3
5 df-3 3=2+1
6 4 5 eqtri ⟨“ABC”⟩=2+1
7 2 fveq2i F=⟨“JK”⟩
8 s2len ⟨“JK”⟩=2
9 7 8 eqtr2i 2=F
10 9 oveq1i 2+1=F+1
11 6 10 eqtri ⟨“ABC”⟩=F+1
12 3 11 eqtri P=F+1