Description: The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | |
| 2zrngbas.r | |- R = ( CCfld |`s E ) | ||
| Assertion | 2zrngadd | |- + = ( +g ` R ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2zrng.e |  |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | |
| 2 | 2zrngbas.r | |- R = ( CCfld |`s E ) | |
| 3 | zex | |- ZZ e. _V | |
| 4 | 1 3 | rabex2 | |- E e. _V | 
| 5 | 2 | cnfldsrngadd | |- ( E e. _V -> + = ( +g ` R ) ) | 
| 6 | 4 5 | ax-mp | |- + = ( +g ` R ) |