Metamath Proof Explorer


Theorem 2zrngadd

Description: The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zrngbas.r
|- R = ( CCfld |`s E )
Assertion 2zrngadd
|- + = ( +g ` R )

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zrngbas.r
 |-  R = ( CCfld |`s E )
3 zex
 |-  ZZ e. _V
4 1 3 rabex2
 |-  E e. _V
5 2 cnfldsrngadd
 |-  ( E e. _V -> + = ( +g ` R ) )
6 4 5 ax-mp
 |-  + = ( +g ` R )