Description: The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
2zrngbas.r | |- R = ( CCfld |`s E ) |
||
Assertion | 2zrngadd | |- + = ( +g ` R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
2 | 2zrngbas.r | |- R = ( CCfld |`s E ) |
|
3 | zex | |- ZZ e. _V |
|
4 | 1 3 | rabex2 | |- E e. _V |
5 | 2 | cnfldsrngadd | |- ( E e. _V -> + = ( +g ` R ) ) |
6 | 4 5 | ax-mp | |- + = ( +g ` R ) |