Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
2zrngbas.r | |- R = ( CCfld |`s E ) |
||
Assertion | 2zrng0 | |- 0 = ( 0g ` R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
2 | 2zrngbas.r | |- R = ( CCfld |`s E ) |
|
3 | cncrng | |- CCfld e. CRing |
|
4 | crngring | |- ( CCfld e. CRing -> CCfld e. Ring ) |
|
5 | ringmnd | |- ( CCfld e. Ring -> CCfld e. Mnd ) |
|
6 | 3 4 5 | mp2b | |- CCfld e. Mnd |
7 | 1 | 0even | |- 0 e. E |
8 | ssrab2 | |- { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ ZZ |
|
9 | 1 8 | eqsstri | |- E C_ ZZ |
10 | zsscn | |- ZZ C_ CC |
|
11 | 9 10 | sstri | |- E C_ CC |
12 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
13 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
14 | 2 12 13 | ress0g | |- ( ( CCfld e. Mnd /\ 0 e. E /\ E C_ CC ) -> 0 = ( 0g ` R ) ) |
15 | 6 7 11 14 | mp3an | |- 0 = ( 0g ` R ) |