Metamath Proof Explorer


Theorem 2zrng0

Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zrngbas.r
|- R = ( CCfld |`s E )
Assertion 2zrng0
|- 0 = ( 0g ` R )

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zrngbas.r
 |-  R = ( CCfld |`s E )
3 cncrng
 |-  CCfld e. CRing
4 crngring
 |-  ( CCfld e. CRing -> CCfld e. Ring )
5 ringmnd
 |-  ( CCfld e. Ring -> CCfld e. Mnd )
6 3 4 5 mp2b
 |-  CCfld e. Mnd
7 1 0even
 |-  0 e. E
8 ssrab2
 |-  { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ ZZ
9 1 8 eqsstri
 |-  E C_ ZZ
10 zsscn
 |-  ZZ C_ CC
11 9 10 sstri
 |-  E C_ CC
12 cnfldbas
 |-  CC = ( Base ` CCfld )
13 cnfld0
 |-  0 = ( 0g ` CCfld )
14 2 12 13 ress0g
 |-  ( ( CCfld e. Mnd /\ 0 e. E /\ E C_ CC ) -> 0 = ( 0g ` R ) )
15 6 7 11 14 mp3an
 |-  0 = ( 0g ` R )