| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e |  |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 |  | 0zd |  |-  ( 2 e. CC -> 0 e. ZZ ) | 
						
							| 5 |  | oveq2 |  |-  ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( x = 0 -> ( 0 = ( 2 x. x ) <-> 0 = ( 2 x. 0 ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( 2 e. CC /\ x = 0 ) -> ( 0 = ( 2 x. x ) <-> 0 = ( 2 x. 0 ) ) ) | 
						
							| 8 |  | mul01 |  |-  ( 2 e. CC -> ( 2 x. 0 ) = 0 ) | 
						
							| 9 | 8 | eqcomd |  |-  ( 2 e. CC -> 0 = ( 2 x. 0 ) ) | 
						
							| 10 | 4 7 9 | rspcedvd |  |-  ( 2 e. CC -> E. x e. ZZ 0 = ( 2 x. x ) ) | 
						
							| 11 | 3 10 | ax-mp |  |-  E. x e. ZZ 0 = ( 2 x. x ) | 
						
							| 12 |  | eqeq1 |  |-  ( z = 0 -> ( z = ( 2 x. x ) <-> 0 = ( 2 x. x ) ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( z = 0 -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ 0 = ( 2 x. x ) ) ) | 
						
							| 14 | 13 | elrab |  |-  ( 0 e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } <-> ( 0 e. ZZ /\ E. x e. ZZ 0 = ( 2 x. x ) ) ) | 
						
							| 15 | 2 11 14 | mpbir2an |  |-  0 e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | 
						
							| 16 | 15 1 | eleqtrri |  |-  0 e. E |