| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e |  |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | 
						
							| 2 |  | halfnz |  |-  -. ( 1 / 2 ) e. ZZ | 
						
							| 3 |  | eleq1a |  |-  ( x e. ZZ -> ( ( 1 / 2 ) = x -> ( 1 / 2 ) e. ZZ ) ) | 
						
							| 4 | 2 3 | mtoi |  |-  ( x e. ZZ -> -. ( 1 / 2 ) = x ) | 
						
							| 5 |  | 1cnd |  |-  ( x e. ZZ -> 1 e. CC ) | 
						
							| 6 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 7 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 8 | 7 | a1i |  |-  ( x e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 9 |  | divmul2 |  |-  ( ( 1 e. CC /\ x e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc |  |-  ( x e. ZZ -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) ) | 
						
							| 11 | 4 10 | mtbid |  |-  ( x e. ZZ -> -. 1 = ( 2 x. x ) ) | 
						
							| 12 | 11 | nrex |  |-  -. E. x e. ZZ 1 = ( 2 x. x ) | 
						
							| 13 | 12 | intnan |  |-  -. ( 1 e. ZZ /\ E. x e. ZZ 1 = ( 2 x. x ) ) | 
						
							| 14 |  | eqeq1 |  |-  ( z = 1 -> ( z = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( z = 1 -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ 1 = ( 2 x. x ) ) ) | 
						
							| 16 | 15 1 | elrab2 |  |-  ( 1 e. E <-> ( 1 e. ZZ /\ E. x e. ZZ 1 = ( 2 x. x ) ) ) | 
						
							| 17 | 13 16 | mtbir |  |-  -. 1 e. E | 
						
							| 18 | 17 | nelir |  |-  1 e/ E |