Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
2 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
3 |
|
eleq1a |
|- ( x e. ZZ -> ( ( 1 / 2 ) = x -> ( 1 / 2 ) e. ZZ ) ) |
4 |
2 3
|
mtoi |
|- ( x e. ZZ -> -. ( 1 / 2 ) = x ) |
5 |
|
1cnd |
|- ( x e. ZZ -> 1 e. CC ) |
6 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
7 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
8 |
7
|
a1i |
|- ( x e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
9 |
|
divmul2 |
|- ( ( 1 e. CC /\ x e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) ) |
10 |
5 6 8 9
|
syl3anc |
|- ( x e. ZZ -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) ) |
11 |
4 10
|
mtbid |
|- ( x e. ZZ -> -. 1 = ( 2 x. x ) ) |
12 |
11
|
nrex |
|- -. E. x e. ZZ 1 = ( 2 x. x ) |
13 |
12
|
intnan |
|- -. ( 1 e. ZZ /\ E. x e. ZZ 1 = ( 2 x. x ) ) |
14 |
|
eqeq1 |
|- ( z = 1 -> ( z = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) |
15 |
14
|
rexbidv |
|- ( z = 1 -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ 1 = ( 2 x. x ) ) ) |
16 |
15 1
|
elrab2 |
|- ( 1 e. E <-> ( 1 e. ZZ /\ E. x e. ZZ 1 = ( 2 x. x ) ) ) |
17 |
13 16
|
mtbir |
|- -. 1 e. E |
18 |
17
|
nelir |
|- 1 e/ E |