| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | halfnz | ⊢ ¬  ( 1  /  2 )  ∈  ℤ | 
						
							| 3 |  | eleq1a | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 1  /  2 )  =  𝑥  →  ( 1  /  2 )  ∈  ℤ ) ) | 
						
							| 4 | 2 3 | mtoi | ⊢ ( 𝑥  ∈  ℤ  →  ¬  ( 1  /  2 )  =  𝑥 ) | 
						
							| 5 |  | 1cnd | ⊢ ( 𝑥  ∈  ℤ  →  1  ∈  ℂ ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 7 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 9 |  | divmul2 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑥  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 1  /  2 )  =  𝑥  ↔  1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 1  /  2 )  =  𝑥  ↔  1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 11 | 4 10 | mtbid | ⊢ ( 𝑥  ∈  ℤ  →  ¬  1  =  ( 2  ·  𝑥 ) ) | 
						
							| 12 | 11 | nrex | ⊢ ¬  ∃ 𝑥  ∈  ℤ 1  =  ( 2  ·  𝑥 ) | 
						
							| 13 | 12 | intnan | ⊢ ¬  ( 1  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 1  =  ( 2  ·  𝑥 ) ) | 
						
							| 14 |  | eqeq1 | ⊢ ( 𝑧  =  1  →  ( 𝑧  =  ( 2  ·  𝑥 )  ↔  1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑧  =  1  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℤ 1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 16 | 15 1 | elrab2 | ⊢ ( 1  ∈  𝐸  ↔  ( 1  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 17 | 13 16 | mtbir | ⊢ ¬  1  ∈  𝐸 | 
						
							| 18 | 17 | nelir | ⊢ 1  ∉  𝐸 |