Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
halfnz |
⊢ ¬ ( 1 / 2 ) ∈ ℤ |
3 |
|
eleq1a |
⊢ ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 → ( 1 / 2 ) ∈ ℤ ) ) |
4 |
2 3
|
mtoi |
⊢ ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = 𝑥 ) |
5 |
|
1cnd |
⊢ ( 𝑥 ∈ ℤ → 1 ∈ ℂ ) |
6 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
7 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
8 |
7
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
9 |
|
divmul2 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) ) |
10 |
5 6 8 9
|
syl3anc |
⊢ ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) ) |
11 |
4 10
|
mtbid |
⊢ ( 𝑥 ∈ ℤ → ¬ 1 = ( 2 · 𝑥 ) ) |
12 |
11
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) |
13 |
12
|
intnan |
⊢ ¬ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑧 = 1 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) ) ) |
16 |
15 1
|
elrab2 |
⊢ ( 1 ∈ 𝐸 ↔ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) ) ) |
17 |
13 16
|
mtbir |
⊢ ¬ 1 ∈ 𝐸 |
18 |
17
|
nelir |
⊢ 1 ∉ 𝐸 |