Metamath Proof Explorer


Theorem 1neven

Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypothesis 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
Assertion 1neven 1 ∉ 𝐸

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 halfnz ¬ ( 1 / 2 ) ∈ ℤ
3 eleq1a ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 → ( 1 / 2 ) ∈ ℤ ) )
4 2 3 mtoi ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = 𝑥 )
5 1cnd ( 𝑥 ∈ ℤ → 1 ∈ ℂ )
6 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
7 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
8 7 a1i ( 𝑥 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) )
9 divmul2 ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) )
10 5 6 8 9 syl3anc ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) )
11 4 10 mtbid ( 𝑥 ∈ ℤ → ¬ 1 = ( 2 · 𝑥 ) )
12 11 nrex ¬ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 )
13 12 intnan ¬ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) )
14 eqeq1 ( 𝑧 = 1 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) )
15 14 rexbidv ( 𝑧 = 1 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) ) )
16 15 1 elrab2 ( 1 ∈ 𝐸 ↔ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( 2 · 𝑥 ) ) )
17 13 16 mtbir ¬ 1 ∈ 𝐸
18 17 nelir 1 ∉ 𝐸