Metamath Proof Explorer


Theorem 1neven

Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypothesis 2zrng.e E=z|xz=2x
Assertion 1neven 1E

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 halfnz ¬12
3 eleq1a x12=x12
4 2 3 mtoi x¬12=x
5 1cnd x1
6 zcn xx
7 2cnne0 220
8 7 a1i x220
9 divmul2 1x22012=x1=2x
10 5 6 8 9 syl3anc x12=x1=2x
11 4 10 mtbid x¬1=2x
12 11 nrex ¬x1=2x
13 12 intnan ¬1x1=2x
14 eqeq1 z=1z=2x1=2x
15 14 rexbidv z=1xz=2xx1=2x
16 15 1 elrab2 1E1x1=2x
17 13 16 mtbir ¬1E
18 17 nelir 1E