Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The non-unital ring of even integers
1neven
Next ⟩
2even
Metamath Proof Explorer
Ascii
Unicode
Theorem
1neven
Description:
1 is not an even integer.
(Contributed by
AV
, 12-Feb-2020)
Ref
Expression
Hypothesis
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
Assertion
1neven
⊢
1
∉
E
Proof
Step
Hyp
Ref
Expression
1
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
2
halfnz
⊢
¬
1
2
∈
ℤ
3
eleq1a
⊢
x
∈
ℤ
→
1
2
=
x
→
1
2
∈
ℤ
4
2
3
mtoi
⊢
x
∈
ℤ
→
¬
1
2
=
x
5
1cnd
⊢
x
∈
ℤ
→
1
∈
ℂ
6
zcn
⊢
x
∈
ℤ
→
x
∈
ℂ
7
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
8
7
a1i
⊢
x
∈
ℤ
→
2
∈
ℂ
∧
2
≠
0
9
divmul2
⊢
1
∈
ℂ
∧
x
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
1
2
=
x
↔
1
=
2
⁢
x
10
5
6
8
9
syl3anc
⊢
x
∈
ℤ
→
1
2
=
x
↔
1
=
2
⁢
x
11
4
10
mtbid
⊢
x
∈
ℤ
→
¬
1
=
2
⁢
x
12
11
nrex
⊢
¬
∃
x
∈
ℤ
1
=
2
⁢
x
13
12
intnan
⊢
¬
1
∈
ℤ
∧
∃
x
∈
ℤ
1
=
2
⁢
x
14
eqeq1
⊢
z
=
1
→
z
=
2
⁢
x
↔
1
=
2
⁢
x
15
14
rexbidv
⊢
z
=
1
→
∃
x
∈
ℤ
z
=
2
⁢
x
↔
∃
x
∈
ℤ
1
=
2
⁢
x
16
15
1
elrab2
⊢
1
∈
E
↔
1
∈
ℤ
∧
∃
x
∈
ℤ
1
=
2
⁢
x
17
13
16
mtbir
⊢
¬
1
∈
E
18
17
nelir
⊢
1
∉
E