Metamath Proof Explorer


Theorem 2even

Description: 2 is an even integer. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypothesis 2zrng.e E = z | x z = 2 x
Assertion 2even 2 E

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2z 2
3 2cn 2
4 1zzd 2 1
5 oveq2 x = 1 2 x = 2 1
6 5 eqeq2d x = 1 2 = 2 x 2 = 2 1
7 6 adantl 2 x = 1 2 = 2 x 2 = 2 1
8 mulid1 2 2 1 = 2
9 8 eqcomd 2 2 = 2 1
10 4 7 9 rspcedvd 2 x 2 = 2 x
11 3 10 ax-mp x 2 = 2 x
12 eqeq1 z = 2 z = 2 x 2 = 2 x
13 12 rexbidv z = 2 x z = 2 x x 2 = 2 x
14 13 elrab 2 z | x z = 2 x 2 x 2 = 2 x
15 2 11 14 mpbir2an 2 z | x z = 2 x
16 15 1 eleqtrri 2 E