Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|
2 |
|
2zlidl.u |
|
3 |
|
ssrab2 |
|
4 |
1 3
|
eqsstri |
|
5 |
1
|
0even |
|
6 |
5
|
ne0ii |
|
7 |
|
eqeq1 |
|
8 |
7
|
rexbidv |
|
9 |
8 1
|
elrab2 |
|
10 |
|
eqeq1 |
|
11 |
10
|
rexbidv |
|
12 |
11 1
|
elrab2 |
|
13 |
9 12
|
anbi12i |
|
14 |
|
simpl |
|
15 |
|
simprll |
|
16 |
14 15
|
zmulcld |
|
17 |
|
simpl |
|
18 |
17
|
adantl |
|
19 |
18
|
adantl |
|
20 |
16 19
|
zaddcld |
|
21 |
|
oveq2 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
cbvrexvw |
|
24 |
|
oveq2 |
|
25 |
24
|
eqeq2d |
|
26 |
25
|
cbvrexvw |
|
27 |
|
simpr |
|
28 |
|
simprll |
|
29 |
28
|
adantr |
|
30 |
27 29
|
zmulcld |
|
31 |
|
simp-4l |
|
32 |
30 31
|
zaddcld |
|
33 |
|
simpr |
|
34 |
33
|
ad2antrl |
|
35 |
34
|
oveq2d |
|
36 |
|
simpllr |
|
37 |
35 36
|
oveq12d |
|
38 |
37
|
adantr |
|
39 |
|
oveq2 |
|
40 |
38 39
|
eqeqan12d |
|
41 |
|
zcn |
|
42 |
41
|
adantl |
|
43 |
|
2cnd |
|
44 |
|
zcn |
|
45 |
44
|
adantr |
|
46 |
45
|
ad2antrl |
|
47 |
46
|
adantr |
|
48 |
42 43 47
|
mul12d |
|
49 |
48
|
oveq1d |
|
50 |
42 47
|
mulcld |
|
51 |
|
zcn |
|
52 |
51
|
ad4antr |
|
53 |
43 50 52
|
adddid |
|
54 |
49 53
|
eqtr4d |
|
55 |
32 40 54
|
rspcedvd |
|
56 |
55
|
exp41 |
|
57 |
56
|
rexlimiva |
|
58 |
26 57
|
sylbi |
|
59 |
58
|
impcom |
|
60 |
59
|
expdcom |
|
61 |
60
|
rexlimiva |
|
62 |
23 61
|
sylbi |
|
63 |
62
|
impcom |
|
64 |
63
|
imp |
|
65 |
64
|
impcom |
|
66 |
|
eqeq1 |
|
67 |
66
|
rexbidv |
|
68 |
67 1
|
elrab2 |
|
69 |
20 65 68
|
sylanbrc |
|
70 |
13 69
|
sylan2b |
|
71 |
70
|
ralrimivva |
|
72 |
71
|
rgen |
|
73 |
|
zringbas |
|
74 |
|
zringplusg |
|
75 |
|
zringmulr |
|
76 |
2 73 74 75
|
islidl |
|
77 |
4 6 72 76
|
mpbir3an |
|