| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
|
| 2 |
|
2zlidl.u |
|
| 3 |
|
ssrab2 |
|
| 4 |
1 3
|
eqsstri |
|
| 5 |
1
|
0even |
|
| 6 |
5
|
ne0ii |
|
| 7 |
|
eqeq1 |
|
| 8 |
7
|
rexbidv |
|
| 9 |
8 1
|
elrab2 |
|
| 10 |
|
eqeq1 |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11 1
|
elrab2 |
|
| 13 |
9 12
|
anbi12i |
|
| 14 |
|
simpl |
|
| 15 |
|
simprll |
|
| 16 |
14 15
|
zmulcld |
|
| 17 |
|
simpl |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
adantl |
|
| 20 |
16 19
|
zaddcld |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
cbvrexvw |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eqeq2d |
|
| 26 |
25
|
cbvrexvw |
|
| 27 |
|
simpr |
|
| 28 |
|
simprll |
|
| 29 |
28
|
adantr |
|
| 30 |
27 29
|
zmulcld |
|
| 31 |
|
simp-4l |
|
| 32 |
30 31
|
zaddcld |
|
| 33 |
|
simpr |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
simpllr |
|
| 37 |
35 36
|
oveq12d |
|
| 38 |
37
|
adantr |
|
| 39 |
|
oveq2 |
|
| 40 |
38 39
|
eqeqan12d |
|
| 41 |
|
zcn |
|
| 42 |
41
|
adantl |
|
| 43 |
|
2cnd |
|
| 44 |
|
zcn |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
ad2antrl |
|
| 47 |
46
|
adantr |
|
| 48 |
42 43 47
|
mul12d |
|
| 49 |
48
|
oveq1d |
|
| 50 |
42 47
|
mulcld |
|
| 51 |
|
zcn |
|
| 52 |
51
|
ad4antr |
|
| 53 |
43 50 52
|
adddid |
|
| 54 |
49 53
|
eqtr4d |
|
| 55 |
32 40 54
|
rspcedvd |
|
| 56 |
55
|
exp41 |
|
| 57 |
56
|
rexlimiva |
|
| 58 |
26 57
|
sylbi |
|
| 59 |
58
|
impcom |
|
| 60 |
59
|
expdcom |
|
| 61 |
60
|
rexlimiva |
|
| 62 |
23 61
|
sylbi |
|
| 63 |
62
|
impcom |
|
| 64 |
63
|
imp |
|
| 65 |
64
|
impcom |
|
| 66 |
|
eqeq1 |
|
| 67 |
66
|
rexbidv |
|
| 68 |
67 1
|
elrab2 |
|
| 69 |
20 65 68
|
sylanbrc |
|
| 70 |
13 69
|
sylan2b |
|
| 71 |
70
|
ralrimivva |
|
| 72 |
71
|
rgen |
|
| 73 |
|
zringbas |
|
| 74 |
|
zringplusg |
|
| 75 |
|
zringmulr |
|
| 76 |
2 73 74 75
|
islidl |
|
| 77 |
4 6 72 76
|
mpbir3an |
|