| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zlidl.u | ⊢ 𝑈  =  ( LIdeal ‘ ℤring ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ⊆  ℤ | 
						
							| 4 | 1 3 | eqsstri | ⊢ 𝐸  ⊆  ℤ | 
						
							| 5 | 1 | 0even | ⊢ 0  ∈  𝐸 | 
						
							| 6 | 5 | ne0ii | ⊢ 𝐸  ≠  ∅ | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑧  =  𝑗  →  ( 𝑧  =  ( 2  ·  𝑥 )  ↔  𝑗  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝑧  =  𝑗  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 9 | 8 1 | elrab2 | ⊢ ( 𝑗  ∈  𝐸  ↔  ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑧  =  𝑘  →  ( 𝑧  =  ( 2  ·  𝑥 )  ↔  𝑘  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑧  =  𝑘  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 12 | 11 1 | elrab2 | ⊢ ( 𝑘  ∈  𝐸  ↔  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 13 | 9 12 | anbi12i | ⊢ ( ( 𝑗  ∈  𝐸  ∧  𝑘  ∈  𝐸 )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  𝑖  ∈  ℤ ) | 
						
							| 15 |  | simprll | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 16 | 14 15 | zmulcld | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  ( 𝑖  ·  𝑗 )  ∈  ℤ ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 20 | 16 19 | zaddcld | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  ℤ ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 2  ·  𝑥 )  =  ( 2  ·  𝑎 ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝑗  =  ( 2  ·  𝑥 )  ↔  𝑗  =  ( 2  ·  𝑎 ) ) ) | 
						
							| 23 | 22 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑎  ∈  ℤ 𝑗  =  ( 2  ·  𝑎 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝑏  →  ( 2  ·  𝑥 )  =  ( 2  ·  𝑏 ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝑥  =  𝑏  →  ( 𝑘  =  ( 2  ·  𝑥 )  ↔  𝑘  =  ( 2  ·  𝑏 ) ) ) | 
						
							| 26 | 25 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑏  ∈  ℤ 𝑘  =  ( 2  ·  𝑏 ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℤ ) | 
						
							| 28 |  | simprll | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  𝑎  ∈  ℤ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑎  ∈  ℤ ) | 
						
							| 30 | 27 29 | zmulcld | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ·  𝑎 )  ∈  ℤ ) | 
						
							| 31 |  | simp-4l | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑏  ∈  ℤ ) | 
						
							| 32 | 30 31 | zaddcld | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( ( 𝑖  ·  𝑎 )  +  𝑏 )  ∈  ℤ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  →  𝑗  =  ( 2  ·  𝑎 ) ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  𝑗  =  ( 2  ·  𝑎 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  ( 𝑖  ·  𝑗 )  =  ( 𝑖  ·  ( 2  ·  𝑎 ) ) ) | 
						
							| 36 |  | simpllr | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  𝑘  =  ( 2  ·  𝑏 ) ) | 
						
							| 37 | 35 36 | oveq12d | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( ( 𝑖  ·  ( 2  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( ( 𝑖  ·  ( 2  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑥  =  ( ( 𝑖  ·  𝑎 )  +  𝑏 )  →  ( 2  ·  𝑥 )  =  ( 2  ·  ( ( 𝑖  ·  𝑎 )  +  𝑏 ) ) ) | 
						
							| 40 | 38 39 | eqeqan12d | ⊢ ( ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  ∧  𝑥  =  ( ( 𝑖  ·  𝑎 )  +  𝑏 ) )  →  ( ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 )  ↔  ( ( 𝑖  ·  ( 2  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) )  =  ( 2  ·  ( ( 𝑖  ·  𝑎 )  +  𝑏 ) ) ) ) | 
						
							| 41 |  | zcn | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℂ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℂ ) | 
						
							| 43 |  | 2cnd | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 44 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  →  𝑎  ∈  ℂ ) | 
						
							| 46 | 45 | ad2antrl | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  →  𝑎  ∈  ℂ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑎  ∈  ℂ ) | 
						
							| 48 | 42 43 47 | mul12d | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ·  ( 2  ·  𝑎 ) )  =  ( 2  ·  ( 𝑖  ·  𝑎 ) ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( ( 𝑖  ·  ( 2  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) )  =  ( ( 2  ·  ( 𝑖  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 50 | 42 47 | mulcld | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ·  𝑎 )  ∈  ℂ ) | 
						
							| 51 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 52 | 51 | ad4antr | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  𝑏  ∈  ℂ ) | 
						
							| 53 | 43 50 52 | adddid | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( 2  ·  ( ( 𝑖  ·  𝑎 )  +  𝑏 ) )  =  ( ( 2  ·  ( 𝑖  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 54 | 49 53 | eqtr4d | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ( ( 𝑖  ·  ( 2  ·  𝑎 ) )  +  ( 2  ·  𝑏 ) )  =  ( 2  ·  ( ( 𝑖  ·  𝑎 )  +  𝑏 ) ) ) | 
						
							| 55 | 32 40 54 | rspcedvd | ⊢ ( ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ ) )  ∧  𝑖  ∈  ℤ )  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) | 
						
							| 56 | 55 | exp41 | ⊢ ( ( 𝑏  ∈  ℤ  ∧  𝑘  =  ( 2  ·  𝑏 ) )  →  ( 𝑘  ∈  ℤ  →  ( ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 57 | 56 | rexlimiva | ⊢ ( ∃ 𝑏  ∈  ℤ 𝑘  =  ( 2  ·  𝑏 )  →  ( 𝑘  ∈  ℤ  →  ( ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 58 | 26 57 | sylbi | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 )  →  ( 𝑘  ∈  ℤ  →  ( ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 59 | 58 | impcom | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  ( ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) | 
						
							| 60 | 59 | expdcom | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑗  =  ( 2  ·  𝑎 ) )  →  ( 𝑗  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 61 | 60 | rexlimiva | ⊢ ( ∃ 𝑎  ∈  ℤ 𝑗  =  ( 2  ·  𝑎 )  →  ( 𝑗  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 62 | 23 61 | sylbi | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 )  →  ( 𝑗  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) ) | 
						
							| 63 | 62 | impcom | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  →  ( ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) )  →  ( 𝑖  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 65 | 64 | impcom | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) | 
						
							| 66 |  | eqeq1 | ⊢ ( 𝑧  =  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  →  ( 𝑧  =  ( 2  ·  𝑥 )  ↔  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 67 | 66 | rexbidv | ⊢ ( 𝑧  =  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 68 | 67 1 | elrab2 | ⊢ ( ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸  ↔  ( ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ ( ( 𝑖  ·  𝑗 )  +  𝑘 )  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 69 | 20 65 68 | sylanbrc | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( ( 𝑗  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑗  =  ( 2  ·  𝑥 ) )  ∧  ( 𝑘  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 𝑘  =  ( 2  ·  𝑥 ) ) ) )  →  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸 ) | 
						
							| 70 | 13 69 | sylan2b | ⊢ ( ( 𝑖  ∈  ℤ  ∧  ( 𝑗  ∈  𝐸  ∧  𝑘  ∈  𝐸 ) )  →  ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸 ) | 
						
							| 71 | 70 | ralrimivva | ⊢ ( 𝑖  ∈  ℤ  →  ∀ 𝑗  ∈  𝐸 ∀ 𝑘  ∈  𝐸 ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸 ) | 
						
							| 72 | 71 | rgen | ⊢ ∀ 𝑖  ∈  ℤ ∀ 𝑗  ∈  𝐸 ∀ 𝑘  ∈  𝐸 ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸 | 
						
							| 73 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 74 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 75 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 76 | 2 73 74 75 | islidl | ⊢ ( 𝐸  ∈  𝑈  ↔  ( 𝐸  ⊆  ℤ  ∧  𝐸  ≠  ∅  ∧  ∀ 𝑖  ∈  ℤ ∀ 𝑗  ∈  𝐸 ∀ 𝑘  ∈  𝐸 ( ( 𝑖  ·  𝑗 )  +  𝑘 )  ∈  𝐸 ) ) | 
						
							| 77 | 4 6 72 76 | mpbir3an | ⊢ 𝐸  ∈  𝑈 |