Metamath Proof Explorer


Theorem 2zrng

Description: The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm . (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zlidl.u 𝑈 = ( LIdeal ‘ ℤring )
2zrng.r 𝑅 = ( ℤrings 𝐸 )
Assertion 2zrng 𝑅 ∈ Rng

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zlidl.u 𝑈 = ( LIdeal ‘ ℤring )
3 2zrng.r 𝑅 = ( ℤrings 𝐸 )
4 zringring ring ∈ Ring
5 1 2 2zlidl 𝐸𝑈
6 2 3 lidlrng ( ( ℤring ∈ Ring ∧ 𝐸𝑈 ) → 𝑅 ∈ Rng )
7 4 5 6 mp2an 𝑅 ∈ Rng