Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2zrng.e | ⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } | |
| 2zrngbas.r | ⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) | ||
| Assertion | 2zrngbas | ⊢ 𝐸 = ( Base ‘ 𝑅 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2zrng.e | ⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } | |
| 2 | 2zrngbas.r | ⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) | |
| 3 | ssrab2 | ⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℤ | |
| 4 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 5 | 3 4 | sstri | ⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℂ | 
| 6 | 1 5 | eqsstri | ⊢ 𝐸 ⊆ ℂ | 
| 7 | 2 | cnfldsrngbas | ⊢ ( 𝐸 ⊆ ℂ → 𝐸 = ( Base ‘ 𝑅 ) ) | 
| 8 | 6 7 | ax-mp | ⊢ 𝐸 = ( Base ‘ 𝑅 ) |