Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | ⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } | |
2zrngbas.r | ⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) | ||
Assertion | 2zrngbas | ⊢ 𝐸 = ( Base ‘ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | ⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } | |
2 | 2zrngbas.r | ⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) | |
3 | ssrab2 | ⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℤ | |
4 | zsscn | ⊢ ℤ ⊆ ℂ | |
5 | 3 4 | sstri | ⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℂ |
6 | 1 5 | eqsstri | ⊢ 𝐸 ⊆ ℂ |
7 | 2 | cnfldsrngbas | ⊢ ( 𝐸 ⊆ ℂ → 𝐸 = ( Base ‘ 𝑅 ) ) |
8 | 6 7 | ax-mp | ⊢ 𝐸 = ( Base ‘ 𝑅 ) |