Metamath Proof Explorer


Theorem 2zrngbas

Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
Assertion 2zrngbas 𝐸 = ( Base ‘ 𝑅 )

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 ssrab2 { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℤ
4 zsscn ℤ ⊆ ℂ
5 3 4 sstri { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ⊆ ℂ
6 1 5 eqsstri 𝐸 ⊆ ℂ
7 2 cnfldsrngbas ( 𝐸 ⊆ ℂ → 𝐸 = ( Base ‘ 𝑅 ) )
8 6 7 ax-mp 𝐸 = ( Base ‘ 𝑅 )