Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
| 2zrngbas.r | |- R = ( CCfld |`s E ) |
||
| Assertion | 2zrngbas | |- E = ( Base ` R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
| 2 | 2zrngbas.r | |- R = ( CCfld |`s E ) |
|
| 3 | ssrab2 | |- { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ ZZ |
|
| 4 | zsscn | |- ZZ C_ CC |
|
| 5 | 3 4 | sstri | |- { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ CC |
| 6 | 1 5 | eqsstri | |- E C_ CC |
| 7 | 2 | cnfldsrngbas | |- ( E C_ CC -> E = ( Base ` R ) ) |
| 8 | 6 7 | ax-mp | |- E = ( Base ` R ) |