Metamath Proof Explorer


Theorem 2zrngbas

Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zrngbas.r
|- R = ( CCfld |`s E )
Assertion 2zrngbas
|- E = ( Base ` R )

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zrngbas.r
 |-  R = ( CCfld |`s E )
3 ssrab2
 |-  { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ ZZ
4 zsscn
 |-  ZZ C_ CC
5 3 4 sstri
 |-  { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } C_ CC
6 1 5 eqsstri
 |-  E C_ CC
7 2 cnfldsrngbas
 |-  ( E C_ CC -> E = ( Base ` R ) )
8 6 7 ax-mp
 |-  E = ( Base ` R )