Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
1 2
|
lidlabl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Abel ) |
4 |
1 2
|
lidlmsgrp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
5 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑅 ∈ Ring ) |
6 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
7 |
6
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
8 |
6
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
9 |
6
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
10 |
7 8 9
|
3anim123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
16 |
13 14 15
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
17 |
5 12 16
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
18 |
13 14 15
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
19 |
5 12 18
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
20 |
17 19
|
jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
21 |
20
|
ralrimivvva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
22 |
2 15
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
23 |
22
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
24 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) |
25 |
2 14
|
ressplusg |
⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐼 ) ) |
26 |
25
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝐼 ) = ( +g ‘ 𝑅 ) ) |
27 |
26
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) |
28 |
23 24 27
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) ) |
29 |
23
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
30 |
23
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) |
31 |
26 29 30
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
32 |
28 31
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
33 |
26
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
34 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) |
35 |
23 33 34
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
36 |
23
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
37 |
26 30 36
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
39 |
32 38
|
anbi12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
41 |
40
|
ralbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
42 |
41
|
2ralbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
43 |
21 42
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
44 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
45 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
46 |
|
eqid |
⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) |
47 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
48 |
44 45 46 47
|
isrng |
⊢ ( 𝐼 ∈ Rng ↔ ( 𝐼 ∈ Abel ∧ ( mulGrp ‘ 𝐼 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) ) |
49 |
3 4 43 48
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Rng ) |