Metamath Proof Explorer


Theorem lidlrng

Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) (Proof shortened by AV, 11-Mar-2025)

Ref Expression
Hypotheses lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
Assertion lidlrng ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝐼 ∈ Rng )

Proof

Step Hyp Ref Expression
1 lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 ringrng ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
4 3 adantr ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝑅 ∈ Rng )
5 simpr ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝑈𝐿 )
6 1 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) )
7 1 2 rnglidlrng ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Rng )
8 4 5 6 7 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝐼 ∈ Rng )