Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) (Proof shortened by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| Assertion | lidlrng | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Rng ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑅 ∈ Rng ) | 
| 5 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑈 ∈ 𝐿 ) | |
| 6 | 1 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) | 
| 7 | 1 2 | rnglidlrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Rng ) | 
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Rng ) |