Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
lidlabl.i |
|- I = ( R |`s U ) |
3 |
1 2
|
lidlabl |
|- ( ( R e. Ring /\ U e. L ) -> I e. Abel ) |
4 |
1 2
|
lidlmsgrp |
|- ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) |
5 |
|
simpll |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> R e. Ring ) |
6 |
1 2
|
lidlssbas |
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
7 |
6
|
sseld |
|- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
8 |
6
|
sseld |
|- ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) ) |
9 |
6
|
sseld |
|- ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) ) |
10 |
7 8 9
|
3anim123d |
|- ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
11 |
10
|
adantl |
|- ( ( R e. Ring /\ U e. L ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
12 |
11
|
imp |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
16 |
13 14 15
|
ringdi |
|- ( ( R e. Ring /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
17 |
5 12 16
|
syl2anc |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
18 |
13 14 15
|
ringdir |
|- ( ( R e. Ring /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
19 |
5 12 18
|
syl2anc |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
20 |
17 19
|
jca |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) |
21 |
20
|
ralrimivvva |
|- ( ( R e. Ring /\ U e. L ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) |
22 |
2 15
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
23 |
22
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
24 |
|
eqidd |
|- ( U e. L -> a = a ) |
25 |
2 14
|
ressplusg |
|- ( U e. L -> ( +g ` R ) = ( +g ` I ) ) |
26 |
25
|
eqcomd |
|- ( U e. L -> ( +g ` I ) = ( +g ` R ) ) |
27 |
26
|
oveqd |
|- ( U e. L -> ( b ( +g ` I ) c ) = ( b ( +g ` R ) c ) ) |
28 |
23 24 27
|
oveq123d |
|- ( U e. L -> ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( a ( .r ` R ) ( b ( +g ` R ) c ) ) ) |
29 |
23
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
30 |
23
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) c ) = ( a ( .r ` R ) c ) ) |
31 |
26 29 30
|
oveq123d |
|- ( U e. L -> ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
32 |
28 31
|
eqeq12d |
|- ( U e. L -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) <-> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) ) |
33 |
26
|
oveqd |
|- ( U e. L -> ( a ( +g ` I ) b ) = ( a ( +g ` R ) b ) ) |
34 |
|
eqidd |
|- ( U e. L -> c = c ) |
35 |
23 33 34
|
oveq123d |
|- ( U e. L -> ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( +g ` R ) b ) ( .r ` R ) c ) ) |
36 |
23
|
oveqd |
|- ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) ) |
37 |
26 30 36
|
oveq123d |
|- ( U e. L -> ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
38 |
35 37
|
eqeq12d |
|- ( U e. L -> ( ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) |
39 |
32 38
|
anbi12d |
|- ( U e. L -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
40 |
39
|
adantl |
|- ( ( R e. Ring /\ U e. L ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
41 |
40
|
ralbidv |
|- ( ( R e. Ring /\ U e. L ) -> ( A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
42 |
41
|
2ralbidv |
|- ( ( R e. Ring /\ U e. L ) -> ( A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
43 |
21 42
|
mpbird |
|- ( ( R e. Ring /\ U e. L ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) |
44 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
45 |
|
eqid |
|- ( mulGrp ` I ) = ( mulGrp ` I ) |
46 |
|
eqid |
|- ( +g ` I ) = ( +g ` I ) |
47 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
48 |
44 45 46 47
|
isrng |
|- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) |
49 |
3 4 43 48
|
syl3anbrc |
|- ( ( R e. Ring /\ U e. L ) -> I e. Rng ) |