Metamath Proof Explorer


Theorem lidlrng

Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l
|- L = ( LIdeal ` R )
lidlabl.i
|- I = ( R |`s U )
Assertion lidlrng
|- ( ( R e. Ring /\ U e. L ) -> I e. Rng )

Proof

Step Hyp Ref Expression
1 lidlabl.l
 |-  L = ( LIdeal ` R )
2 lidlabl.i
 |-  I = ( R |`s U )
3 1 2 lidlabl
 |-  ( ( R e. Ring /\ U e. L ) -> I e. Abel )
4 1 2 lidlmsgrp
 |-  ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp )
5 simpll
 |-  ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> R e. Ring )
6 1 2 lidlssbas
 |-  ( U e. L -> ( Base ` I ) C_ ( Base ` R ) )
7 6 sseld
 |-  ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) )
8 6 sseld
 |-  ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) )
9 6 sseld
 |-  ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) )
10 7 8 9 3anim123d
 |-  ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) )
11 10 adantl
 |-  ( ( R e. Ring /\ U e. L ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) )
12 11 imp
 |-  ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 eqid
 |-  ( +g ` R ) = ( +g ` R )
15 eqid
 |-  ( .r ` R ) = ( .r ` R )
16 13 14 15 ringdi
 |-  ( ( R e. Ring /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) )
17 5 12 16 syl2anc
 |-  ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) )
18 13 14 15 ringdir
 |-  ( ( R e. Ring /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) )
19 5 12 18 syl2anc
 |-  ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) )
20 17 19 jca
 |-  ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) )
21 20 ralrimivvva
 |-  ( ( R e. Ring /\ U e. L ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) )
22 2 15 ressmulr
 |-  ( U e. L -> ( .r ` R ) = ( .r ` I ) )
23 22 eqcomd
 |-  ( U e. L -> ( .r ` I ) = ( .r ` R ) )
24 eqidd
 |-  ( U e. L -> a = a )
25 2 14 ressplusg
 |-  ( U e. L -> ( +g ` R ) = ( +g ` I ) )
26 25 eqcomd
 |-  ( U e. L -> ( +g ` I ) = ( +g ` R ) )
27 26 oveqd
 |-  ( U e. L -> ( b ( +g ` I ) c ) = ( b ( +g ` R ) c ) )
28 23 24 27 oveq123d
 |-  ( U e. L -> ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( a ( .r ` R ) ( b ( +g ` R ) c ) ) )
29 23 oveqd
 |-  ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) )
30 23 oveqd
 |-  ( U e. L -> ( a ( .r ` I ) c ) = ( a ( .r ` R ) c ) )
31 26 29 30 oveq123d
 |-  ( U e. L -> ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) )
32 28 31 eqeq12d
 |-  ( U e. L -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) <-> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) )
33 26 oveqd
 |-  ( U e. L -> ( a ( +g ` I ) b ) = ( a ( +g ` R ) b ) )
34 eqidd
 |-  ( U e. L -> c = c )
35 23 33 34 oveq123d
 |-  ( U e. L -> ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( +g ` R ) b ) ( .r ` R ) c ) )
36 23 oveqd
 |-  ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) )
37 26 30 36 oveq123d
 |-  ( U e. L -> ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) )
38 35 37 eqeq12d
 |-  ( U e. L -> ( ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) )
39 32 38 anbi12d
 |-  ( U e. L -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) )
40 39 adantl
 |-  ( ( R e. Ring /\ U e. L ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) )
41 40 ralbidv
 |-  ( ( R e. Ring /\ U e. L ) -> ( A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) )
42 41 2ralbidv
 |-  ( ( R e. Ring /\ U e. L ) -> ( A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) )
43 21 42 mpbird
 |-  ( ( R e. Ring /\ U e. L ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) )
44 eqid
 |-  ( Base ` I ) = ( Base ` I )
45 eqid
 |-  ( mulGrp ` I ) = ( mulGrp ` I )
46 eqid
 |-  ( +g ` I ) = ( +g ` I )
47 eqid
 |-  ( .r ` I ) = ( .r ` I )
48 44 45 46 47 isrng
 |-  ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) )
49 3 4 43 48 syl3anbrc
 |-  ( ( R e. Ring /\ U e. L ) -> I e. Rng )