Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) (Proof shortened by AV, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | |- L = ( LIdeal ` R ) |
|
lidlabl.i | |- I = ( R |`s U ) |
||
Assertion | lidlrng | |- ( ( R e. Ring /\ U e. L ) -> I e. Rng ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | |- L = ( LIdeal ` R ) |
|
2 | lidlabl.i | |- I = ( R |`s U ) |
|
3 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
4 | 3 | adantr | |- ( ( R e. Ring /\ U e. L ) -> R e. Rng ) |
5 | simpr | |- ( ( R e. Ring /\ U e. L ) -> U e. L ) |
|
6 | 1 | lidlsubg | |- ( ( R e. Ring /\ U e. L ) -> U e. ( SubGrp ` R ) ) |
7 | 1 2 | rnglidlrng | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Rng ) |
8 | 4 5 6 7 | syl3anc | |- ( ( R e. Ring /\ U e. L ) -> I e. Rng ) |