Metamath Proof Explorer


Theorem lidlrng

Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) (Proof shortened by AV, 11-Mar-2025)

Ref Expression
Hypotheses lidlabl.l
|- L = ( LIdeal ` R )
lidlabl.i
|- I = ( R |`s U )
Assertion lidlrng
|- ( ( R e. Ring /\ U e. L ) -> I e. Rng )

Proof

Step Hyp Ref Expression
1 lidlabl.l
 |-  L = ( LIdeal ` R )
2 lidlabl.i
 |-  I = ( R |`s U )
3 ringrng
 |-  ( R e. Ring -> R e. Rng )
4 3 adantr
 |-  ( ( R e. Ring /\ U e. L ) -> R e. Rng )
5 simpr
 |-  ( ( R e. Ring /\ U e. L ) -> U e. L )
6 1 lidlsubg
 |-  ( ( R e. Ring /\ U e. L ) -> U e. ( SubGrp ` R ) )
7 1 2 rnglidlrng
 |-  ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Rng )
8 4 5 6 7 syl3anc
 |-  ( ( R e. Ring /\ U e. L ) -> I e. Rng )