Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | |- L = ( LIdeal ` R ) |
|
lidlabl.i | |- I = ( R |`s U ) |
||
Assertion | lidlabl | |- ( ( R e. Ring /\ U e. L ) -> I e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | |- L = ( LIdeal ` R ) |
|
2 | lidlabl.i | |- I = ( R |`s U ) |
|
3 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
4 | 3 | adantr | |- ( ( R e. Ring /\ U e. L ) -> R e. Abel ) |
5 | 1 | lidlsubg | |- ( ( R e. Ring /\ U e. L ) -> U e. ( SubGrp ` R ) ) |
6 | 2 | subgabl | |- ( ( R e. Abel /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
7 | 4 5 6 | syl2anc | |- ( ( R e. Ring /\ U e. L ) -> I e. Abel ) |