Metamath Proof Explorer


Theorem lidlabl

Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l
|- L = ( LIdeal ` R )
lidlabl.i
|- I = ( R |`s U )
Assertion lidlabl
|- ( ( R e. Ring /\ U e. L ) -> I e. Abel )

Proof

Step Hyp Ref Expression
1 lidlabl.l
 |-  L = ( LIdeal ` R )
2 lidlabl.i
 |-  I = ( R |`s U )
3 ringabl
 |-  ( R e. Ring -> R e. Abel )
4 3 adantr
 |-  ( ( R e. Ring /\ U e. L ) -> R e. Abel )
5 1 lidlsubg
 |-  ( ( R e. Ring /\ U e. L ) -> U e. ( SubGrp ` R ) )
6 2 subgabl
 |-  ( ( R e. Abel /\ U e. ( SubGrp ` R ) ) -> I e. Abel )
7 4 5 6 syl2anc
 |-  ( ( R e. Ring /\ U e. L ) -> I e. Abel )