Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlabl.l | |- L = ( LIdeal ` R ) |
|
| lidlabl.i | |- I = ( R |`s U ) |
||
| Assertion | lidlabl | |- ( ( R e. Ring /\ U e. L ) -> I e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlabl.l | |- L = ( LIdeal ` R ) |
|
| 2 | lidlabl.i | |- I = ( R |`s U ) |
|
| 3 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
| 4 | 3 | adantr | |- ( ( R e. Ring /\ U e. L ) -> R e. Abel ) |
| 5 | 1 | lidlsubg | |- ( ( R e. Ring /\ U e. L ) -> U e. ( SubGrp ` R ) ) |
| 6 | 2 | subgabl | |- ( ( R e. Abel /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
| 7 | 4 5 6 | syl2anc | |- ( ( R e. Ring /\ U e. L ) -> I e. Abel ) |