Metamath Proof Explorer


Theorem lidlabl

Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L=LIdealR
lidlabl.i I=R𝑠U
Assertion lidlabl RRingULIAbel

Proof

Step Hyp Ref Expression
1 lidlabl.l L=LIdealR
2 lidlabl.i I=R𝑠U
3 ringabl RRingRAbel
4 3 adantr RRingULRAbel
5 1 lidlsubg RRingULUSubGrpR
6 2 subgabl RAbelUSubGrpRIAbel
7 4 5 6 syl2anc RRingULIAbel