Metamath Proof Explorer


Theorem lidlabl

Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlabl R Ring U L I Abel

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 ringabl R Ring R Abel
4 3 adantr R Ring U L R Abel
5 1 lidlsubg R Ring U L U SubGrp R
6 2 subgabl R Abel U SubGrp R I Abel
7 4 5 6 syl2anc R Ring U L I Abel