Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| Assertion | lidlabl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Abel ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑅 ∈ Abel ) | 
| 5 | 1 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) | 
| 6 | 2 | subgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) | 
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Abel ) |