Metamath Proof Explorer


Theorem lidlabl

Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
Assertion lidlabl ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝐼 ∈ Abel )

Proof

Step Hyp Ref Expression
1 lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )
4 3 adantr ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝑅 ∈ Abel )
5 1 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) )
6 2 subgabl ( ( 𝑅 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel )
7 4 5 6 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → 𝐼 ∈ Abel )