Description: A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
Assertion | lidlabl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
2 | lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
3 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑅 ∈ Abel ) |
5 | 1 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) |
6 | 2 | subgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) |
7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Abel ) |