Metamath Proof Explorer


Theorem subgabl

Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Hypothesis subgabl.h 𝐻 = ( 𝐺s 𝑆 )
Assertion subgabl ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel )

Proof

Step Hyp Ref Expression
1 subgabl.h 𝐻 = ( 𝐺s 𝑆 )
2 1 subgbas ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) )
3 2 adantl ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) )
4 eqid ( +g𝐺 ) = ( +g𝐺 )
5 1 4 ressplusg ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g𝐺 ) = ( +g𝐻 ) )
6 5 adantl ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( +g𝐺 ) = ( +g𝐻 ) )
7 1 subggrp ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )
8 7 adantl ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp )
9 simp1l ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝐺 ∈ Abel )
10 simp1r ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
11 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
12 11 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
13 10 12 syl ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
14 simp2 ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑥𝑆 )
15 13 14 sseldd ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
16 simp3 ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑦𝑆 )
17 13 16 sseldd ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
18 11 4 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
19 9 15 17 18 syl3anc ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝑆𝑦𝑆 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
20 3 6 8 19 isabld ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel )