Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgabl.h | |
|
Assertion | subgabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | |
|
2 | 1 | subgbas | |
3 | 2 | adantl | |
4 | eqid | |
|
5 | 1 4 | ressplusg | |
6 | 5 | adantl | |
7 | 1 | subggrp | |
8 | 7 | adantl | |
9 | simp1l | |
|
10 | simp1r | |
|
11 | eqid | |
|
12 | 11 | subgss | |
13 | 10 12 | syl | |
14 | simp2 | |
|
15 | 13 14 | sseldd | |
16 | simp3 | |
|
17 | 13 16 | sseldd | |
18 | 11 4 | ablcom | |
19 | 9 15 17 18 | syl3anc | |
20 | 3 6 8 19 | isabld | |