Metamath Proof Explorer


Theorem subgabl

Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Hypothesis subgabl.h H=G𝑠S
Assertion subgabl GAbelSSubGrpGHAbel

Proof

Step Hyp Ref Expression
1 subgabl.h H=G𝑠S
2 1 subgbas SSubGrpGS=BaseH
3 2 adantl GAbelSSubGrpGS=BaseH
4 eqid +G=+G
5 1 4 ressplusg SSubGrpG+G=+H
6 5 adantl GAbelSSubGrpG+G=+H
7 1 subggrp SSubGrpGHGrp
8 7 adantl GAbelSSubGrpGHGrp
9 simp1l GAbelSSubGrpGxSySGAbel
10 simp1r GAbelSSubGrpGxSySSSubGrpG
11 eqid BaseG=BaseG
12 11 subgss SSubGrpGSBaseG
13 10 12 syl GAbelSSubGrpGxSySSBaseG
14 simp2 GAbelSSubGrpGxSySxS
15 13 14 sseldd GAbelSSubGrpGxSySxBaseG
16 simp3 GAbelSSubGrpGxSySyS
17 13 16 sseldd GAbelSSubGrpGxSySyBaseG
18 11 4 ablcom GAbelxBaseGyBaseGx+Gy=y+Gx
19 9 15 17 18 syl3anc GAbelSSubGrpGxSySx+Gy=y+Gx
20 3 6 8 19 isabld GAbelSSubGrpGHAbel