Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
1 2
|
lidlbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
4 |
|
eleq1a |
⊢ ( 𝑈 ∈ 𝐿 → ( ( Base ‘ 𝐼 ) = 𝑈 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) ) |
5 |
3 4
|
mpd |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) |
6 |
5
|
anim2i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ) ) |
8 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
10 |
9
|
sseld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
11 |
10
|
com12 |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐼 ) → ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
13 |
12
|
impcom |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐼 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
17 |
1 15 16
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
18 |
7 13 14 17
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
19 |
18
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
20 |
|
fvex |
⊢ ( mulGrp ‘ 𝐼 ) ∈ V |
21 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
23 |
21 22
|
mgpbas |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
24 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
25 |
21 24
|
mgpplusg |
⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
26 |
23 25
|
ismgm |
⊢ ( ( mulGrp ‘ 𝐼 ) ∈ V → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
27 |
20 26
|
mp1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
28 |
2 16
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
29 |
28
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
31 |
30
|
oveqdr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
32 |
31
|
eleq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
33 |
32
|
2ralbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
34 |
27 33
|
bitrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
35 |
19 34
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |