Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
1 2
|
lidlmmgm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
4
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
7 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
8 |
7
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
9 |
7
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
10 |
7
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
11 |
8 9 10
|
3anim123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
4 14
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
17 |
4 16
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
18 |
15 17
|
mndass |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
19 |
6 13 18
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
20 |
19
|
ralrimivvva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
21 |
2 16
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
22 |
21
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
23 |
22
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
24 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) |
25 |
22 23 24
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
26 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) |
27 |
22
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
28 |
22 26 27
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
29 |
25 28
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
31 |
30
|
ralbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
32 |
31
|
2ralbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
33 |
20 32
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) |
34 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
36 |
34 35
|
mgpbas |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
38 |
34 37
|
mgpplusg |
⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
39 |
36 38
|
issgrp |
⊢ ( ( mulGrp ‘ 𝐼 ) ∈ Smgrp ↔ ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
40 |
3 33 39
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |