Metamath Proof Explorer


Theorem lidlmsgrp

Description: The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
Assertion lidlmsgrp ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 1 2 lidlmmgm ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm )
4 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
5 4 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
6 5 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
7 1 2 lidlssbas ( 𝑈𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) )
8 7 sseld ( 𝑈𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) )
9 7 sseld ( 𝑈𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) )
10 7 sseld ( 𝑈𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) )
11 8 9 10 3anim123d ( 𝑈𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) )
12 11 adantl ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) )
13 12 imp ( ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 4 14 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
16 eqid ( .r𝑅 ) = ( .r𝑅 )
17 4 16 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
18 15 17 mndass ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) )
19 6 13 18 syl2anc ( ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) )
20 19 ralrimivvva ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) )
21 2 16 ressmulr ( 𝑈𝐿 → ( .r𝑅 ) = ( .r𝐼 ) )
22 21 eqcomd ( 𝑈𝐿 → ( .r𝐼 ) = ( .r𝑅 ) )
23 22 oveqd ( 𝑈𝐿 → ( 𝑎 ( .r𝐼 ) 𝑏 ) = ( 𝑎 ( .r𝑅 ) 𝑏 ) )
24 eqidd ( 𝑈𝐿𝑐 = 𝑐 )
25 22 23 24 oveq123d ( 𝑈𝐿 → ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) )
26 eqidd ( 𝑈𝐿𝑎 = 𝑎 )
27 22 oveqd ( 𝑈𝐿 → ( 𝑏 ( .r𝐼 ) 𝑐 ) = ( 𝑏 ( .r𝑅 ) 𝑐 ) )
28 22 26 27 oveq123d ( 𝑈𝐿 → ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) )
29 25 28 eqeq12d ( 𝑈𝐿 → ( ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) ) )
30 29 adantl ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) ) )
31 30 ralbidv ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) ) )
32 31 2ralbidv ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝑅 ) 𝑏 ) ( .r𝑅 ) 𝑐 ) = ( 𝑎 ( .r𝑅 ) ( 𝑏 ( .r𝑅 ) 𝑐 ) ) ) )
33 20 32 mpbird ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) )
34 eqid ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 )
35 eqid ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 )
36 34 35 mgpbas ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) )
37 eqid ( .r𝐼 ) = ( .r𝐼 )
38 34 37 mgpplusg ( .r𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) )
39 36 38 issgrp ( ( mulGrp ‘ 𝐼 ) ∈ Smgrp ↔ ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ( .r𝐼 ) 𝑐 ) = ( 𝑎 ( .r𝐼 ) ( 𝑏 ( .r𝐼 ) 𝑐 ) ) ) )
40 3 33 39 sylanbrc ( ( 𝑅 ∈ Ring ∧ 𝑈𝐿 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp )