Metamath Proof Explorer


Theorem lidlmsgrp

Description: The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlmsgrp Could not format assertion : No typesetting found for |- ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 1 2 lidlmmgm R Ring U L mulGrp I Mgm
4 eqid mulGrp R = mulGrp R
5 4 ringmgp R Ring mulGrp R Mnd
6 5 ad2antrr R Ring U L a Base I b Base I c Base I mulGrp R Mnd
7 1 2 lidlssbas U L Base I Base R
8 7 sseld U L a Base I a Base R
9 7 sseld U L b Base I b Base R
10 7 sseld U L c Base I c Base R
11 8 9 10 3anim123d U L a Base I b Base I c Base I a Base R b Base R c Base R
12 11 adantl R Ring U L a Base I b Base I c Base I a Base R b Base R c Base R
13 12 imp R Ring U L a Base I b Base I c Base I a Base R b Base R c Base R
14 eqid Base R = Base R
15 4 14 mgpbas Base R = Base mulGrp R
16 eqid R = R
17 4 16 mgpplusg R = + mulGrp R
18 15 17 mndass mulGrp R Mnd a Base R b Base R c Base R a R b R c = a R b R c
19 6 13 18 syl2anc R Ring U L a Base I b Base I c Base I a R b R c = a R b R c
20 19 ralrimivvva R Ring U L a Base I b Base I c Base I a R b R c = a R b R c
21 2 16 ressmulr U L R = I
22 21 eqcomd U L I = R
23 22 oveqd U L a I b = a R b
24 eqidd U L c = c
25 22 23 24 oveq123d U L a I b I c = a R b R c
26 eqidd U L a = a
27 22 oveqd U L b I c = b R c
28 22 26 27 oveq123d U L a I b I c = a R b R c
29 25 28 eqeq12d U L a I b I c = a I b I c a R b R c = a R b R c
30 29 adantl R Ring U L a I b I c = a I b I c a R b R c = a R b R c
31 30 ralbidv R Ring U L c Base I a I b I c = a I b I c c Base I a R b R c = a R b R c
32 31 2ralbidv R Ring U L a Base I b Base I c Base I a I b I c = a I b I c a Base I b Base I c Base I a R b R c = a R b R c
33 20 32 mpbird R Ring U L a Base I b Base I c Base I a I b I c = a I b I c
34 eqid mulGrp I = mulGrp I
35 eqid Base I = Base I
36 34 35 mgpbas Base I = Base mulGrp I
37 eqid I = I
38 34 37 mgpplusg I = + mulGrp I
39 36 38 issgrp Could not format ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) : No typesetting found for |- ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) with typecode |-
40 3 33 39 sylanbrc Could not format ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-