Metamath Proof Explorer


Theorem lidlmmgm

Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlmmgm R Ring U L mulGrp I Mgm

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 1 2 lidlbas U L Base I = U
4 eleq1a U L Base I = U Base I L
5 3 4 mpd U L Base I L
6 5 anim2i R Ring U L R Ring Base I L
7 6 adantr R Ring U L a Base I b Base I R Ring Base I L
8 1 2 lidlssbas U L Base I Base R
9 8 adantl R Ring U L Base I Base R
10 9 sseld R Ring U L a Base I a Base R
11 10 com12 a Base I R Ring U L a Base R
12 11 adantr a Base I b Base I R Ring U L a Base R
13 12 impcom R Ring U L a Base I b Base I a Base R
14 simprr R Ring U L a Base I b Base I b Base I
15 eqid Base R = Base R
16 eqid R = R
17 1 15 16 lidlmcl R Ring Base I L a Base R b Base I a R b Base I
18 7 13 14 17 syl12anc R Ring U L a Base I b Base I a R b Base I
19 18 ralrimivva R Ring U L a Base I b Base I a R b Base I
20 fvex mulGrp I V
21 eqid mulGrp I = mulGrp I
22 eqid Base I = Base I
23 21 22 mgpbas Base I = Base mulGrp I
24 eqid I = I
25 21 24 mgpplusg I = + mulGrp I
26 23 25 ismgm mulGrp I V mulGrp I Mgm a Base I b Base I a I b Base I
27 20 26 mp1i R Ring U L mulGrp I Mgm a Base I b Base I a I b Base I
28 2 16 ressmulr U L R = I
29 28 eqcomd U L I = R
30 29 adantl R Ring U L I = R
31 30 oveqdr R Ring U L a Base I b Base I a I b = a R b
32 31 eleq1d R Ring U L a Base I b Base I a I b Base I a R b Base I
33 32 2ralbidva R Ring U L a Base I b Base I a I b Base I a Base I b Base I a R b Base I
34 27 33 bitrd R Ring U L mulGrp I Mgm a Base I b Base I a R b Base I
35 19 34 mpbird R Ring U L mulGrp I Mgm