Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
lidlabl.i |
|- I = ( R |`s U ) |
3 |
1 2
|
lidlbas |
|- ( U e. L -> ( Base ` I ) = U ) |
4 |
|
eleq1a |
|- ( U e. L -> ( ( Base ` I ) = U -> ( Base ` I ) e. L ) ) |
5 |
3 4
|
mpd |
|- ( U e. L -> ( Base ` I ) e. L ) |
6 |
5
|
anim2i |
|- ( ( R e. Ring /\ U e. L ) -> ( R e. Ring /\ ( Base ` I ) e. L ) ) |
7 |
6
|
adantr |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( R e. Ring /\ ( Base ` I ) e. L ) ) |
8 |
1 2
|
lidlssbas |
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
9 |
8
|
adantl |
|- ( ( R e. Ring /\ U e. L ) -> ( Base ` I ) C_ ( Base ` R ) ) |
10 |
9
|
sseld |
|- ( ( R e. Ring /\ U e. L ) -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
11 |
10
|
com12 |
|- ( a e. ( Base ` I ) -> ( ( R e. Ring /\ U e. L ) -> a e. ( Base ` R ) ) ) |
12 |
11
|
adantr |
|- ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) -> ( ( R e. Ring /\ U e. L ) -> a e. ( Base ` R ) ) ) |
13 |
12
|
impcom |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> a e. ( Base ` R ) ) |
14 |
|
simprr |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> b e. ( Base ` I ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
17 |
1 15 16
|
lidlmcl |
|- ( ( ( R e. Ring /\ ( Base ` I ) e. L ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
18 |
7 13 14 17
|
syl12anc |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
19 |
18
|
ralrimivva |
|- ( ( R e. Ring /\ U e. L ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
20 |
|
fvex |
|- ( mulGrp ` I ) e. _V |
21 |
|
eqid |
|- ( mulGrp ` I ) = ( mulGrp ` I ) |
22 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
23 |
21 22
|
mgpbas |
|- ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) |
24 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
25 |
21 24
|
mgpplusg |
|- ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) |
26 |
23 25
|
ismgm |
|- ( ( mulGrp ` I ) e. _V -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
27 |
20 26
|
mp1i |
|- ( ( R e. Ring /\ U e. L ) -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
28 |
2 16
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
29 |
28
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
30 |
29
|
adantl |
|- ( ( R e. Ring /\ U e. L ) -> ( .r ` I ) = ( .r ` R ) ) |
31 |
30
|
oveqdr |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
32 |
31
|
eleq1d |
|- ( ( ( R e. Ring /\ U e. L ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
33 |
32
|
2ralbidva |
|- ( ( R e. Ring /\ U e. L ) -> ( A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
34 |
27 33
|
bitrd |
|- ( ( R e. Ring /\ U e. L ) -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
35 |
19 34
|
mpbird |
|- ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Mgm ) |