Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
lidlabl.i |
|- I = ( R |`s U ) |
3 |
|
zlidlring.b |
|- B = ( Base ` R ) |
4 |
|
zlidlring.0 |
|- .0. = ( 0g ` R ) |
5 |
1 4
|
lidl0 |
|- ( R e. Ring -> { .0. } e. L ) |
6 |
5
|
adantr |
|- ( ( R e. Ring /\ U = { .0. } ) -> { .0. } e. L ) |
7 |
|
eleq1 |
|- ( U = { .0. } -> ( U e. L <-> { .0. } e. L ) ) |
8 |
7
|
adantl |
|- ( ( R e. Ring /\ U = { .0. } ) -> ( U e. L <-> { .0. } e. L ) ) |
9 |
6 8
|
mpbird |
|- ( ( R e. Ring /\ U = { .0. } ) -> U e. L ) |
10 |
1 2
|
lidlrng |
|- ( ( R e. Ring /\ U e. L ) -> I e. Rng ) |
11 |
9 10
|
syldan |
|- ( ( R e. Ring /\ U = { .0. } ) -> I e. Rng ) |
12 |
|
eleq1 |
|- ( { .0. } = U -> ( { .0. } e. L <-> U e. L ) ) |
13 |
12
|
eqcoms |
|- ( U = { .0. } -> ( { .0. } e. L <-> U e. L ) ) |
14 |
13
|
adantl |
|- ( ( R e. Ring /\ U = { .0. } ) -> ( { .0. } e. L <-> U e. L ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
15 4
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
15 17 4
|
ringlz |
|- ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
19 |
18 18
|
jca |
|- ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) |
20 |
16 19
|
mpdan |
|- ( R e. Ring -> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) |
21 |
4
|
fvexi |
|- .0. e. _V |
22 |
|
oveq2 |
|- ( y = .0. -> ( .0. ( .r ` R ) y ) = ( .0. ( .r ` R ) .0. ) ) |
23 |
|
id |
|- ( y = .0. -> y = .0. ) |
24 |
22 23
|
eqeq12d |
|- ( y = .0. -> ( ( .0. ( .r ` R ) y ) = y <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) |
25 |
|
oveq1 |
|- ( y = .0. -> ( y ( .r ` R ) .0. ) = ( .0. ( .r ` R ) .0. ) ) |
26 |
25 23
|
eqeq12d |
|- ( y = .0. -> ( ( y ( .r ` R ) .0. ) = y <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) |
27 |
24 26
|
anbi12d |
|- ( y = .0. -> ( ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) |
28 |
27
|
ralsng |
|- ( .0. e. _V -> ( A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) |
29 |
21 28
|
mp1i |
|- ( R e. Ring -> ( A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) |
30 |
20 29
|
mpbird |
|- ( R e. Ring -> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) |
31 |
|
oveq1 |
|- ( x = .0. -> ( x ( .r ` R ) y ) = ( .0. ( .r ` R ) y ) ) |
32 |
31
|
eqeq1d |
|- ( x = .0. -> ( ( x ( .r ` R ) y ) = y <-> ( .0. ( .r ` R ) y ) = y ) ) |
33 |
32
|
ovanraleqv |
|- ( x = .0. -> ( A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) |
34 |
33
|
rexsng |
|- ( .0. e. _V -> ( E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) |
35 |
21 34
|
mp1i |
|- ( R e. Ring -> ( E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) |
36 |
30 35
|
mpbird |
|- ( R e. Ring -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
37 |
36
|
adantr |
|- ( ( R e. Ring /\ U = { .0. } ) -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
38 |
37
|
adantr |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
39 |
1 2
|
lidlbas |
|- ( U e. L -> ( Base ` I ) = U ) |
40 |
|
simpr |
|- ( ( R e. Ring /\ U = { .0. } ) -> U = { .0. } ) |
41 |
39 40
|
sylan9eqr |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( Base ` I ) = { .0. } ) |
42 |
2 17
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
43 |
42
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
44 |
43
|
adantl |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( .r ` I ) = ( .r ` R ) ) |
45 |
44
|
oveqd |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( x ( .r ` I ) y ) = ( x ( .r ` R ) y ) ) |
46 |
45
|
eqeq1d |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( x ( .r ` I ) y ) = y <-> ( x ( .r ` R ) y ) = y ) ) |
47 |
44
|
oveqd |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( y ( .r ` I ) x ) = ( y ( .r ` R ) x ) ) |
48 |
47
|
eqeq1d |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( y ( .r ` I ) x ) = y <-> ( y ( .r ` R ) x ) = y ) ) |
49 |
46 48
|
anbi12d |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
50 |
41 49
|
raleqbidv |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
51 |
41 50
|
rexeqbidv |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
52 |
38 51
|
mpbird |
|- ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) |
53 |
52
|
ex |
|- ( ( R e. Ring /\ U = { .0. } ) -> ( U e. L -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) |
54 |
14 53
|
sylbid |
|- ( ( R e. Ring /\ U = { .0. } ) -> ( { .0. } e. L -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) |
55 |
6 54
|
mpd |
|- ( ( R e. Ring /\ U = { .0. } ) -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) |
56 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
57 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
58 |
56 57
|
isringrng |
|- ( I e. Ring <-> ( I e. Rng /\ E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) |
59 |
11 55 58
|
sylanbrc |
|- ( ( R e. Ring /\ U = { .0. } ) -> I e. Ring ) |