| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlabl.l |  |-  L = ( LIdeal ` R ) | 
						
							| 2 |  | lidlabl.i |  |-  I = ( R |`s U ) | 
						
							| 3 |  | zlidlring.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | zlidlring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 | 1 4 | lidl0 |  |-  ( R e. Ring -> { .0. } e. L ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. Ring /\ U = { .0. } ) -> { .0. } e. L ) | 
						
							| 7 |  | eleq1 |  |-  ( U = { .0. } -> ( U e. L <-> { .0. } e. L ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( R e. Ring /\ U = { .0. } ) -> ( U e. L <-> { .0. } e. L ) ) | 
						
							| 9 | 6 8 | mpbird |  |-  ( ( R e. Ring /\ U = { .0. } ) -> U e. L ) | 
						
							| 10 | 1 2 | lidlrng |  |-  ( ( R e. Ring /\ U e. L ) -> I e. Rng ) | 
						
							| 11 | 9 10 | syldan |  |-  ( ( R e. Ring /\ U = { .0. } ) -> I e. Rng ) | 
						
							| 12 |  | eleq1 |  |-  ( { .0. } = U -> ( { .0. } e. L <-> U e. L ) ) | 
						
							| 13 | 12 | eqcoms |  |-  ( U = { .0. } -> ( { .0. } e. L <-> U e. L ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( R e. Ring /\ U = { .0. } ) -> ( { .0. } e. L <-> U e. L ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 | 15 4 | ring0cl |  |-  ( R e. Ring -> .0. e. ( Base ` R ) ) | 
						
							| 17 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 18 | 15 17 4 | ringlz |  |-  ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( .0. ( .r ` R ) .0. ) = .0. ) | 
						
							| 19 | 18 18 | jca |  |-  ( ( R e. Ring /\ .0. e. ( Base ` R ) ) -> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) | 
						
							| 20 | 16 19 | mpdan |  |-  ( R e. Ring -> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) | 
						
							| 21 | 4 | fvexi |  |-  .0. e. _V | 
						
							| 22 |  | oveq2 |  |-  ( y = .0. -> ( .0. ( .r ` R ) y ) = ( .0. ( .r ` R ) .0. ) ) | 
						
							| 23 |  | id |  |-  ( y = .0. -> y = .0. ) | 
						
							| 24 | 22 23 | eqeq12d |  |-  ( y = .0. -> ( ( .0. ( .r ` R ) y ) = y <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) | 
						
							| 25 |  | oveq1 |  |-  ( y = .0. -> ( y ( .r ` R ) .0. ) = ( .0. ( .r ` R ) .0. ) ) | 
						
							| 26 | 25 23 | eqeq12d |  |-  ( y = .0. -> ( ( y ( .r ` R ) .0. ) = y <-> ( .0. ( .r ` R ) .0. ) = .0. ) ) | 
						
							| 27 | 24 26 | anbi12d |  |-  ( y = .0. -> ( ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) | 
						
							| 28 | 27 | ralsng |  |-  ( .0. e. _V -> ( A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) | 
						
							| 29 | 21 28 | mp1i |  |-  ( R e. Ring -> ( A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) <-> ( ( .0. ( .r ` R ) .0. ) = .0. /\ ( .0. ( .r ` R ) .0. ) = .0. ) ) ) | 
						
							| 30 | 20 29 | mpbird |  |-  ( R e. Ring -> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) | 
						
							| 31 |  | oveq1 |  |-  ( x = .0. -> ( x ( .r ` R ) y ) = ( .0. ( .r ` R ) y ) ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( x = .0. -> ( ( x ( .r ` R ) y ) = y <-> ( .0. ( .r ` R ) y ) = y ) ) | 
						
							| 33 | 32 | ovanraleqv |  |-  ( x = .0. -> ( A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) | 
						
							| 34 | 33 | rexsng |  |-  ( .0. e. _V -> ( E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) | 
						
							| 35 | 21 34 | mp1i |  |-  ( R e. Ring -> ( E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) <-> A. y e. { .0. } ( ( .0. ( .r ` R ) y ) = y /\ ( y ( .r ` R ) .0. ) = y ) ) ) | 
						
							| 36 | 30 35 | mpbird |  |-  ( R e. Ring -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( R e. Ring /\ U = { .0. } ) -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) | 
						
							| 39 | 1 2 | lidlbas |  |-  ( U e. L -> ( Base ` I ) = U ) | 
						
							| 40 |  | simpr |  |-  ( ( R e. Ring /\ U = { .0. } ) -> U = { .0. } ) | 
						
							| 41 | 39 40 | sylan9eqr |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( Base ` I ) = { .0. } ) | 
						
							| 42 | 2 17 | ressmulr |  |-  ( U e. L -> ( .r ` R ) = ( .r ` I ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( U e. L -> ( .r ` I ) = ( .r ` R ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( .r ` I ) = ( .r ` R ) ) | 
						
							| 45 | 44 | oveqd |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( x ( .r ` I ) y ) = ( x ( .r ` R ) y ) ) | 
						
							| 46 | 45 | eqeq1d |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( x ( .r ` I ) y ) = y <-> ( x ( .r ` R ) y ) = y ) ) | 
						
							| 47 | 44 | oveqd |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( y ( .r ` I ) x ) = ( y ( .r ` R ) x ) ) | 
						
							| 48 | 47 | eqeq1d |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( y ( .r ` I ) x ) = y <-> ( y ( .r ` R ) x ) = y ) ) | 
						
							| 49 | 46 48 | anbi12d |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) | 
						
							| 50 | 41 49 | raleqbidv |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) | 
						
							| 51 | 41 50 | rexeqbidv |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> ( E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) <-> E. x e. { .0. } A. y e. { .0. } ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) | 
						
							| 52 | 38 51 | mpbird |  |-  ( ( ( R e. Ring /\ U = { .0. } ) /\ U e. L ) -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( R e. Ring /\ U = { .0. } ) -> ( U e. L -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) | 
						
							| 54 | 14 53 | sylbid |  |-  ( ( R e. Ring /\ U = { .0. } ) -> ( { .0. } e. L -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) | 
						
							| 55 | 6 54 | mpd |  |-  ( ( R e. Ring /\ U = { .0. } ) -> E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) | 
						
							| 56 |  | eqid |  |-  ( Base ` I ) = ( Base ` I ) | 
						
							| 57 |  | eqid |  |-  ( .r ` I ) = ( .r ` I ) | 
						
							| 58 | 56 57 | isringrng |  |-  ( I e. Ring <-> ( I e. Rng /\ E. x e. ( Base ` I ) A. y e. ( Base ` I ) ( ( x ( .r ` I ) y ) = y /\ ( y ( .r ` I ) x ) = y ) ) ) | 
						
							| 59 | 11 55 58 | sylanbrc |  |-  ( ( R e. Ring /\ U = { .0. } ) -> I e. Ring ) |