| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlabl.l | ⊢ 𝐿  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lidlabl.i | ⊢ 𝐼  =  ( 𝑅  ↾s  𝑈 ) | 
						
							| 3 |  | zlidlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | zlidlring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 | 1 4 | lidl0 | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  ∈  𝐿 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  {  0  }  ∈  𝐿 ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑈  =  {  0  }  →  ( 𝑈  ∈  𝐿  ↔  {  0  }  ∈  𝐿 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ( 𝑈  ∈  𝐿  ↔  {  0  }  ∈  𝐿 ) ) | 
						
							| 9 | 6 8 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  𝑈  ∈  𝐿 ) | 
						
							| 10 | 1 2 | lidlrng | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐿 )  →  𝐼  ∈  Rng ) | 
						
							| 11 | 9 10 | syldan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  𝐼  ∈  Rng ) | 
						
							| 12 |  | eleq1 | ⊢ ( {  0  }  =  𝑈  →  ( {  0  }  ∈  𝐿  ↔  𝑈  ∈  𝐿 ) ) | 
						
							| 13 | 12 | eqcoms | ⊢ ( 𝑈  =  {  0  }  →  ( {  0  }  ∈  𝐿  ↔  𝑈  ∈  𝐿 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ( {  0  }  ∈  𝐿  ↔  𝑈  ∈  𝐿 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 16 | 15 4 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 18 | 15 17 4 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧   0   ∈  ( Base ‘ 𝑅 ) )  →  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 19 | 18 18 | jca | ⊢ ( ( 𝑅  ∈  Ring  ∧   0   ∈  ( Base ‘ 𝑅 ) )  →  ( (  0  ( .r ‘ 𝑅 )  0  )  =   0   ∧  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) | 
						
							| 20 | 16 19 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  ( (  0  ( .r ‘ 𝑅 )  0  )  =   0   ∧  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) | 
						
							| 21 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑦  =   0   →  (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  (  0  ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 23 |  | id | ⊢ ( 𝑦  =   0   →  𝑦  =   0  ) | 
						
							| 24 | 22 23 | eqeq12d | ⊢ ( 𝑦  =   0   →  ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ↔  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑦  =   0   →  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  (  0  ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 26 | 25 23 | eqeq12d | ⊢ ( 𝑦  =   0   →  ( ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦  ↔  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) | 
						
							| 27 | 24 26 | anbi12d | ⊢ ( 𝑦  =   0   →  ( ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 )  ↔  ( (  0  ( .r ‘ 𝑅 )  0  )  =   0   ∧  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) ) | 
						
							| 28 | 27 | ralsng | ⊢ (  0   ∈  V  →  ( ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 )  ↔  ( (  0  ( .r ‘ 𝑅 )  0  )  =   0   ∧  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) ) | 
						
							| 29 | 21 28 | mp1i | ⊢ ( 𝑅  ∈  Ring  →  ( ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 )  ↔  ( (  0  ( .r ‘ 𝑅 )  0  )  =   0   ∧  (  0  ( .r ‘ 𝑅 )  0  )  =   0  ) ) ) | 
						
							| 30 | 20 29 | mpbird | ⊢ ( 𝑅  ∈  Ring  →  ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑥  =   0   →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  (  0  ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 32 | 31 | eqeq1d | ⊢ ( 𝑥  =   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ↔  (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦 ) ) | 
						
							| 33 | 32 | ovanraleqv | ⊢ ( 𝑥  =   0   →  ( ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 ) ) ) | 
						
							| 34 | 33 | rexsng | ⊢ (  0   ∈  V  →  ( ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 ) ) ) | 
						
							| 35 | 21 34 | mp1i | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  {  0  } ( (  0  ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 )  0  )  =  𝑦 ) ) ) | 
						
							| 36 | 30 35 | mpbird | ⊢ ( 𝑅  ∈  Ring  →  ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 39 | 1 2 | lidlbas | ⊢ ( 𝑈  ∈  𝐿  →  ( Base ‘ 𝐼 )  =  𝑈 ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  𝑈  =  {  0  } ) | 
						
							| 41 | 39 40 | sylan9eqr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( Base ‘ 𝐼 )  =  {  0  } ) | 
						
							| 42 | 2 17 | ressmulr | ⊢ ( 𝑈  ∈  𝐿  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐼 ) ) | 
						
							| 43 | 42 | eqcomd | ⊢ ( 𝑈  ∈  𝐿  →  ( .r ‘ 𝐼 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( .r ‘ 𝐼 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 45 | 44 | oveqd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 46 | 45 | eqeq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ↔  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦 ) ) | 
						
							| 47 | 44 | oveqd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦  ↔  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 49 | 46 48 | anbi12d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 )  ↔  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 50 | 41 49 | raleqbidv | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 51 | 41 50 | rexeqbidv | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 )  ↔  ∃ 𝑥  ∈  {  0  } ∀ 𝑦  ∈  {  0  } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 52 | 38 51 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  ∧  𝑈  ∈  𝐿 )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ( 𝑈  ∈  𝐿  →  ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 54 | 14 53 | sylbid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ( {  0  }  ∈  𝐿  →  ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 55 | 6 54 | mpd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ 𝐼 )  =  ( Base ‘ 𝐼 ) | 
						
							| 57 |  | eqid | ⊢ ( .r ‘ 𝐼 )  =  ( .r ‘ 𝐼 ) | 
						
							| 58 | 56 57 | isringrng | ⊢ ( 𝐼  ∈  Ring  ↔  ( 𝐼  ∈  Rng  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝐼 ) ∀ 𝑦  ∈  ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 59 | 11 55 58 | sylanbrc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  =  {  0  } )  →  𝐼  ∈  Ring ) |