| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
lidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
| 3 |
|
zlidlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
zlidlring.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
1 4
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝐿 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → { 0 } ∈ 𝐿 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑈 = { 0 } → ( 𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ( 𝑈 ∈ 𝐿 ↔ { 0 } ∈ 𝐿 ) ) |
| 9 |
6 8
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → 𝑈 ∈ 𝐿 ) |
| 10 |
1 2
|
lidlrng |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿 ) → 𝐼 ∈ Rng ) |
| 11 |
9 10
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → 𝐼 ∈ Rng ) |
| 12 |
|
eleq1 |
⊢ ( { 0 } = 𝑈 → ( { 0 } ∈ 𝐿 ↔ 𝑈 ∈ 𝐿 ) ) |
| 13 |
12
|
eqcoms |
⊢ ( 𝑈 = { 0 } → ( { 0 } ∈ 𝐿 ↔ 𝑈 ∈ 𝐿 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ( { 0 } ∈ 𝐿 ↔ 𝑈 ∈ 𝐿 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
15 4
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 18 |
15 17 4
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 19 |
18 18
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) |
| 20 |
16 19
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) |
| 21 |
4
|
fvexi |
⊢ 0 ∈ V |
| 22 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0 ( .r ‘ 𝑅 ) 0 ) ) |
| 23 |
|
id |
⊢ ( 𝑦 = 0 → 𝑦 = 0 ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑦 = 0 → ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ↔ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = ( 0 ( .r ‘ 𝑅 ) 0 ) ) |
| 26 |
25 23
|
eqeq12d |
⊢ ( 𝑦 = 0 → ( ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ↔ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) |
| 27 |
24 26
|
anbi12d |
⊢ ( 𝑦 = 0 → ( ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ↔ ( ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) ) |
| 28 |
27
|
ralsng |
⊢ ( 0 ∈ V → ( ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ↔ ( ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) ) |
| 29 |
21 28
|
mp1i |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ↔ ( ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) ) |
| 30 |
20 29
|
mpbird |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 32 |
31
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ↔ ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) ) |
| 33 |
32
|
ovanraleqv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ) ) |
| 34 |
33
|
rexsng |
⊢ ( 0 ∈ V → ( ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ) ) |
| 35 |
21 34
|
mp1i |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ { 0 } ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 0 ) = 𝑦 ) ) ) |
| 36 |
30 35
|
mpbird |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 39 |
1 2
|
lidlbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
| 40 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → 𝑈 = { 0 } ) |
| 41 |
39 40
|
sylan9eqr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( Base ‘ 𝐼 ) = { 0 } ) |
| 42 |
2 17
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
| 43 |
42
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
| 45 |
44
|
oveqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 46 |
45
|
eqeq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) ) |
| 47 |
44
|
oveqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 49 |
46 48
|
anbi12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 50 |
41 49
|
raleqbidv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 51 |
41 50
|
rexeqbidv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 52 |
38 51
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) ∧ 𝑈 ∈ 𝐿 ) → ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ) |
| 53 |
52
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ( 𝑈 ∈ 𝐿 → ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ) ) |
| 54 |
14 53
|
sylbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ( { 0 } ∈ 𝐿 → ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ) ) |
| 55 |
6 54
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ) |
| 56 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 57 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
| 58 |
56 57
|
isringrng |
⊢ ( 𝐼 ∈ Ring ↔ ( 𝐼 ∈ Rng ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ( ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝐼 ) 𝑥 ) = 𝑦 ) ) ) |
| 59 |
11 55 58
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = { 0 } ) → 𝐼 ∈ Ring ) |