Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
|
2 |
|
lidlabl.i |
|
3 |
|
zlidlring.b |
|
4 |
|
zlidlring.0 |
|
5 |
1 4
|
lidl0 |
|
6 |
5
|
adantr |
|
7 |
|
eleq1 |
|
8 |
7
|
adantl |
|
9 |
6 8
|
mpbird |
|
10 |
1 2
|
lidlrng |
|
11 |
9 10
|
syldan |
|
12 |
|
eleq1 |
|
13 |
12
|
eqcoms |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
15 4
|
ring0cl |
|
17 |
|
eqid |
|
18 |
15 17 4
|
ringlz |
|
19 |
18 18
|
jca |
|
20 |
16 19
|
mpdan |
|
21 |
4
|
fvexi |
|
22 |
|
oveq2 |
|
23 |
|
id |
|
24 |
22 23
|
eqeq12d |
|
25 |
|
oveq1 |
|
26 |
25 23
|
eqeq12d |
|
27 |
24 26
|
anbi12d |
|
28 |
27
|
ralsng |
|
29 |
21 28
|
mp1i |
|
30 |
20 29
|
mpbird |
|
31 |
|
oveq1 |
|
32 |
31
|
eqeq1d |
|
33 |
32
|
ovanraleqv |
|
34 |
33
|
rexsng |
|
35 |
21 34
|
mp1i |
|
36 |
30 35
|
mpbird |
|
37 |
36
|
adantr |
|
38 |
37
|
adantr |
|
39 |
1 2
|
lidlbas |
|
40 |
|
simpr |
|
41 |
39 40
|
sylan9eqr |
|
42 |
2 17
|
ressmulr |
|
43 |
42
|
eqcomd |
|
44 |
43
|
adantl |
|
45 |
44
|
oveqd |
|
46 |
45
|
eqeq1d |
|
47 |
44
|
oveqd |
|
48 |
47
|
eqeq1d |
|
49 |
46 48
|
anbi12d |
|
50 |
41 49
|
raleqbidv |
|
51 |
41 50
|
rexeqbidv |
|
52 |
38 51
|
mpbird |
|
53 |
52
|
ex |
|
54 |
14 53
|
sylbid |
|
55 |
6 54
|
mpd |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
56 57
|
isringrng |
|
59 |
11 55 58
|
sylanbrc |
|