Metamath Proof Explorer


Theorem zlidlring

Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L=LIdealR
lidlabl.i I=R𝑠U
zlidlring.b B=BaseR
zlidlring.0 0˙=0R
Assertion zlidlring RRingU=0˙IRing

Proof

Step Hyp Ref Expression
1 lidlabl.l L=LIdealR
2 lidlabl.i I=R𝑠U
3 zlidlring.b B=BaseR
4 zlidlring.0 0˙=0R
5 1 4 lidl0 RRing0˙L
6 5 adantr RRingU=0˙0˙L
7 eleq1 U=0˙UL0˙L
8 7 adantl RRingU=0˙UL0˙L
9 6 8 mpbird RRingU=0˙UL
10 1 2 lidlrng RRingULIRng
11 9 10 syldan RRingU=0˙IRng
12 eleq1 0˙=U0˙LUL
13 12 eqcoms U=0˙0˙LUL
14 13 adantl RRingU=0˙0˙LUL
15 eqid BaseR=BaseR
16 15 4 ring0cl RRing0˙BaseR
17 eqid R=R
18 15 17 4 ringlz RRing0˙BaseR0˙R0˙=0˙
19 18 18 jca RRing0˙BaseR0˙R0˙=0˙0˙R0˙=0˙
20 16 19 mpdan RRing0˙R0˙=0˙0˙R0˙=0˙
21 4 fvexi 0˙V
22 oveq2 y=0˙0˙Ry=0˙R0˙
23 id y=0˙y=0˙
24 22 23 eqeq12d y=0˙0˙Ry=y0˙R0˙=0˙
25 oveq1 y=0˙yR0˙=0˙R0˙
26 25 23 eqeq12d y=0˙yR0˙=y0˙R0˙=0˙
27 24 26 anbi12d y=0˙0˙Ry=yyR0˙=y0˙R0˙=0˙0˙R0˙=0˙
28 27 ralsng 0˙Vy0˙0˙Ry=yyR0˙=y0˙R0˙=0˙0˙R0˙=0˙
29 21 28 mp1i RRingy0˙0˙Ry=yyR0˙=y0˙R0˙=0˙0˙R0˙=0˙
30 20 29 mpbird RRingy0˙0˙Ry=yyR0˙=y
31 oveq1 x=0˙xRy=0˙Ry
32 31 eqeq1d x=0˙xRy=y0˙Ry=y
33 32 ovanraleqv x=0˙y0˙xRy=yyRx=yy0˙0˙Ry=yyR0˙=y
34 33 rexsng 0˙Vx0˙y0˙xRy=yyRx=yy0˙0˙Ry=yyR0˙=y
35 21 34 mp1i RRingx0˙y0˙xRy=yyRx=yy0˙0˙Ry=yyR0˙=y
36 30 35 mpbird RRingx0˙y0˙xRy=yyRx=y
37 36 adantr RRingU=0˙x0˙y0˙xRy=yyRx=y
38 37 adantr RRingU=0˙ULx0˙y0˙xRy=yyRx=y
39 1 2 lidlbas ULBaseI=U
40 simpr RRingU=0˙U=0˙
41 39 40 sylan9eqr RRingU=0˙ULBaseI=0˙
42 2 17 ressmulr ULR=I
43 42 eqcomd ULI=R
44 43 adantl RRingU=0˙ULI=R
45 44 oveqd RRingU=0˙ULxIy=xRy
46 45 eqeq1d RRingU=0˙ULxIy=yxRy=y
47 44 oveqd RRingU=0˙ULyIx=yRx
48 47 eqeq1d RRingU=0˙ULyIx=yyRx=y
49 46 48 anbi12d RRingU=0˙ULxIy=yyIx=yxRy=yyRx=y
50 41 49 raleqbidv RRingU=0˙ULyBaseIxIy=yyIx=yy0˙xRy=yyRx=y
51 41 50 rexeqbidv RRingU=0˙ULxBaseIyBaseIxIy=yyIx=yx0˙y0˙xRy=yyRx=y
52 38 51 mpbird RRingU=0˙ULxBaseIyBaseIxIy=yyIx=y
53 52 ex RRingU=0˙ULxBaseIyBaseIxIy=yyIx=y
54 14 53 sylbid RRingU=0˙0˙LxBaseIyBaseIxIy=yyIx=y
55 6 54 mpd RRingU=0˙xBaseIyBaseIxIy=yyIx=y
56 eqid BaseI=BaseI
57 eqid I=I
58 56 57 isringrng IRingIRngxBaseIyBaseIxIy=yyIx=y
59 11 55 58 sylanbrc RRingU=0˙IRing