| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlabl.l |
|
| 2 |
|
lidlabl.i |
|
| 3 |
|
zlidlring.b |
|
| 4 |
|
zlidlring.0 |
|
| 5 |
1 4
|
lidl0 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
eleq1 |
|
| 8 |
7
|
adantl |
|
| 9 |
6 8
|
mpbird |
|
| 10 |
1 2
|
lidlrng |
|
| 11 |
9 10
|
syldan |
|
| 12 |
|
eleq1 |
|
| 13 |
12
|
eqcoms |
|
| 14 |
13
|
adantl |
|
| 15 |
|
eqid |
|
| 16 |
15 4
|
ring0cl |
|
| 17 |
|
eqid |
|
| 18 |
15 17 4
|
ringlz |
|
| 19 |
18 18
|
jca |
|
| 20 |
16 19
|
mpdan |
|
| 21 |
4
|
fvexi |
|
| 22 |
|
oveq2 |
|
| 23 |
|
id |
|
| 24 |
22 23
|
eqeq12d |
|
| 25 |
|
oveq1 |
|
| 26 |
25 23
|
eqeq12d |
|
| 27 |
24 26
|
anbi12d |
|
| 28 |
27
|
ralsng |
|
| 29 |
21 28
|
mp1i |
|
| 30 |
20 29
|
mpbird |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
32
|
ovanraleqv |
|
| 34 |
33
|
rexsng |
|
| 35 |
21 34
|
mp1i |
|
| 36 |
30 35
|
mpbird |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
adantr |
|
| 39 |
1 2
|
lidlbas |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sylan9eqr |
|
| 42 |
2 17
|
ressmulr |
|
| 43 |
42
|
eqcomd |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
oveqd |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
44
|
oveqd |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
46 48
|
anbi12d |
|
| 50 |
41 49
|
raleqbidv |
|
| 51 |
41 50
|
rexeqbidv |
|
| 52 |
38 51
|
mpbird |
|
| 53 |
52
|
ex |
|
| 54 |
14 53
|
sylbid |
|
| 55 |
6 54
|
mpd |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
56 57
|
isringrng |
|
| 59 |
11 55 58
|
sylanbrc |
|