| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlabl.l |  | 
						
							| 2 |  | lidlabl.i |  | 
						
							| 3 |  | zlidlring.b |  | 
						
							| 4 |  | zlidlring.0 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | isringrng |  | 
						
							| 8 |  | domnring |  | 
						
							| 9 | 8 | anim1i |  | 
						
							| 10 | 1 2 | lidlrng |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | ibar |  | 
						
							| 13 | 12 | bicomd |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 2 15 | ressmulr |  | 
						
							| 17 | 16 | eqcomd |  | 
						
							| 18 | 17 | oveqd |  | 
						
							| 19 | 18 | eqeq1d |  | 
						
							| 20 | 17 | oveqd |  | 
						
							| 21 | 20 | eqeq1d |  | 
						
							| 22 | 19 21 | anbi12d |  | 
						
							| 23 | 22 | ad2antlr |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 | 24 | ralbidv |  | 
						
							| 26 |  | simp-4l |  | 
						
							| 27 | 1 2 | lidlbas |  | 
						
							| 28 | 27 | eleq1d |  | 
						
							| 29 | 28 | ibir |  | 
						
							| 30 | 29 | ad3antlr |  | 
						
							| 31 | 27 | ad2antlr |  | 
						
							| 32 | 31 | eqeq1d |  | 
						
							| 33 | 32 | biimpd |  | 
						
							| 34 | 33 | necon3bd |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 | 30 35 | jca |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 1 15 39 4 | lidldomn1 |  | 
						
							| 41 | 26 37 38 40 | syl3anc |  | 
						
							| 42 | 25 41 | sylbid |  | 
						
							| 43 | 42 | imp |  | 
						
							| 44 | 27 | ad3antlr |  | 
						
							| 45 | 44 | eleq2d |  | 
						
							| 46 | 45 | biimpd |  | 
						
							| 47 | 46 | imp |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 43 48 | eqeltrrd |  | 
						
							| 50 | 49 | rexlimdva2 |  | 
						
							| 51 | 50 | impancom |  | 
						
							| 52 | 9 | adantr |  | 
						
							| 53 | 1 3 39 | lidl1el |  | 
						
							| 54 | 52 53 | syl |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 51 55 | sylibd |  | 
						
							| 57 | 56 | orrd |  | 
						
							| 58 | 57 | ex |  | 
						
							| 59 | 1 2 3 4 | zlidlring |  | 
						
							| 60 | 7 | simprbi |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 | 61 | ex |  | 
						
							| 63 | 8 62 | syl |  | 
						
							| 64 | 63 | ad2antrr |  | 
						
							| 65 | 9 | anim1i |  | 
						
							| 66 | 3 15 | ringideu |  | 
						
							| 67 |  | reurex |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 | 69 | ad2antrr |  | 
						
							| 71 | 2 3 | ressbas |  | 
						
							| 72 | 71 | ad3antlr |  | 
						
							| 73 |  | ineq1 |  | 
						
							| 74 |  | inidm |  | 
						
							| 75 | 73 74 | eqtrdi |  | 
						
							| 76 | 75 | adantl |  | 
						
							| 77 | 72 76 | eqtr3d |  | 
						
							| 78 | 22 | ad3antlr |  | 
						
							| 79 | 77 78 | raleqbidv |  | 
						
							| 80 | 77 79 | rexeqbidv |  | 
						
							| 81 | 70 80 | mpbird |  | 
						
							| 82 | 81 | ex |  | 
						
							| 83 | 65 82 | syl |  | 
						
							| 84 | 64 83 | jaod |  | 
						
							| 85 | 58 84 | impbid |  | 
						
							| 86 | 14 85 | bitrd |  | 
						
							| 87 | 11 86 | mpdan |  | 
						
							| 88 | 7 87 | bitrid |  |