| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidldomn1.l |  | 
						
							| 2 |  | lidldomn1.t |  | 
						
							| 3 |  | lidldomn1.1 |  | 
						
							| 4 |  | lidldomn1.0 |  | 
						
							| 5 |  | domnring |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 |  | simp2l |  | 
						
							| 8 |  | simp2r |  | 
						
							| 9 | 1 4 | lidlnz |  | 
						
							| 10 | 6 7 8 9 | syl3anc |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 |  | id |  | 
						
							| 13 | 11 12 | eqeq12d |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 | 14 12 | eqeq12d |  | 
						
							| 16 | 13 15 | anbi12d |  | 
						
							| 17 | 16 | rspcva |  | 
						
							| 18 | 6 | adantr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 1 | lidlss |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 21 | 3ad2ant2 |  | 
						
							| 23 | 22 | sseld |  | 
						
							| 24 | 23 | com12 |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | impcom |  | 
						
							| 27 | 19 2 3 | ringlidm |  | 
						
							| 28 | 18 26 27 | syl2anc |  | 
						
							| 29 |  | eqeq2 |  | 
						
							| 30 | 29 | eqcoms |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 |  | ringgrp |  | 
						
							| 33 | 5 32 | syl |  | 
						
							| 34 | 33 | 3ad2ant1 |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 21 | sseld |  | 
						
							| 37 | 36 | a1i |  | 
						
							| 38 | 37 | 3imp |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 19 2 | ringcl |  | 
						
							| 41 | 18 39 26 40 | syl3anc |  | 
						
							| 42 | 19 3 | ringidcl |  | 
						
							| 43 | 5 42 | syl |  | 
						
							| 44 | 43 | 3ad2ant1 |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 19 2 | ringcl |  | 
						
							| 47 | 18 45 26 46 | syl3anc |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 19 4 48 | grpsubeq0 |  | 
						
							| 50 | 35 41 47 49 | syl3anc |  | 
						
							| 51 | 19 2 48 18 39 45 26 | ringsubdir |  | 
						
							| 52 | 51 | eqeq1d |  | 
						
							| 53 |  | simpl1 |  | 
						
							| 54 | 34 38 44 | 3jca |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 19 48 | grpsubcl |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 19 2 4 | domneq0 |  | 
						
							| 59 | 53 57 26 58 | syl3anc |  | 
						
							| 60 | 19 4 48 | grpsubeq0 |  | 
						
							| 61 | 55 60 | syl |  | 
						
							| 62 | 61 | biimpd |  | 
						
							| 63 |  | eqneqall |  | 
						
							| 64 | 63 | com12 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 | 65 | adantl |  | 
						
							| 67 | 62 66 | jaod |  | 
						
							| 68 | 59 67 | sylbid |  | 
						
							| 69 | 52 68 | sylbird |  | 
						
							| 70 | 50 69 | sylbird |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 31 71 | sylbid |  | 
						
							| 73 | 28 72 | mpdan |  | 
						
							| 74 | 73 | ex |  | 
						
							| 75 | 74 | com13 |  | 
						
							| 76 | 75 | expd |  | 
						
							| 77 | 76 | adantr |  | 
						
							| 78 | 17 77 | syl |  | 
						
							| 79 | 78 | ex |  | 
						
							| 80 | 79 | pm2.43b |  | 
						
							| 81 | 80 | com14 |  | 
						
							| 82 | 81 | imp |  | 
						
							| 83 | 82 | rexlimdva |  | 
						
							| 84 | 10 83 | mpd |  |