| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidldomn1.l |  |-  L = ( LIdeal ` R ) | 
						
							| 2 |  | lidldomn1.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | lidldomn1.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | lidldomn1.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | domnring |  |-  ( R e. Domn -> R e. Ring ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> R e. Ring ) | 
						
							| 7 |  | simp2l |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U e. L ) | 
						
							| 8 |  | simp2r |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U =/= { .0. } ) | 
						
							| 9 | 1 4 | lidlnz |  |-  ( ( R e. Ring /\ U e. L /\ U =/= { .0. } ) -> E. y e. U y =/= .0. ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> E. y e. U y =/= .0. ) | 
						
							| 11 |  | oveq2 |  |-  ( x = y -> ( I .x. x ) = ( I .x. y ) ) | 
						
							| 12 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( x = y -> ( ( I .x. x ) = x <-> ( I .x. y ) = y ) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = y -> ( x .x. I ) = ( y .x. I ) ) | 
						
							| 15 | 14 12 | eqeq12d |  |-  ( x = y -> ( ( x .x. I ) = x <-> ( y .x. I ) = y ) ) | 
						
							| 16 | 13 15 | anbi12d |  |-  ( x = y -> ( ( ( I .x. x ) = x /\ ( x .x. I ) = x ) <-> ( ( I .x. y ) = y /\ ( y .x. I ) = y ) ) ) | 
						
							| 17 | 16 | rspcva |  |-  ( ( y e. U /\ A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) -> ( ( I .x. y ) = y /\ ( y .x. I ) = y ) ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Ring ) | 
						
							| 19 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 20 | 19 1 | lidlss |  |-  ( U e. L -> U C_ ( Base ` R ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( U e. L /\ U =/= { .0. } ) -> U C_ ( Base ` R ) ) | 
						
							| 22 | 21 | 3ad2ant2 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U C_ ( Base ` R ) ) | 
						
							| 23 | 22 | sseld |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( y e. U -> y e. ( Base ` R ) ) ) | 
						
							| 24 | 23 | com12 |  |-  ( y e. U -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> y e. ( Base ` R ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( y e. U /\ y =/= .0. ) -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> y e. ( Base ` R ) ) ) | 
						
							| 26 | 25 | impcom |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> y e. ( Base ` R ) ) | 
						
							| 27 | 19 2 3 | ringlidm |  |-  ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( .1. .x. y ) = y ) | 
						
							| 28 | 18 26 27 | syl2anc |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( .1. .x. y ) = y ) | 
						
							| 29 |  | eqeq2 |  |-  ( y = ( .1. .x. y ) -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) | 
						
							| 30 | 29 | eqcoms |  |-  ( ( .1. .x. y ) = y -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) | 
						
							| 32 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 33 | 5 32 | syl |  |-  ( R e. Domn -> R e. Grp ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> R e. Grp ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Grp ) | 
						
							| 36 | 21 | sseld |  |-  ( ( U e. L /\ U =/= { .0. } ) -> ( I e. U -> I e. ( Base ` R ) ) ) | 
						
							| 37 | 36 | a1i |  |-  ( R e. Domn -> ( ( U e. L /\ U =/= { .0. } ) -> ( I e. U -> I e. ( Base ` R ) ) ) ) | 
						
							| 38 | 37 | 3imp |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I e. ( Base ` R ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> I e. ( Base ` R ) ) | 
						
							| 40 | 19 2 | ringcl |  |-  ( ( R e. Ring /\ I e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( I .x. y ) e. ( Base ` R ) ) | 
						
							| 41 | 18 39 26 40 | syl3anc |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( I .x. y ) e. ( Base ` R ) ) | 
						
							| 42 | 19 3 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 43 | 5 42 | syl |  |-  ( R e. Domn -> .1. e. ( Base ` R ) ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> .1. e. ( Base ` R ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> .1. e. ( Base ` R ) ) | 
						
							| 46 | 19 2 | ringcl |  |-  ( ( R e. Ring /\ .1. e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( .1. .x. y ) e. ( Base ` R ) ) | 
						
							| 47 | 18 45 26 46 | syl3anc |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( .1. .x. y ) e. ( Base ` R ) ) | 
						
							| 48 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 49 | 19 4 48 | grpsubeq0 |  |-  ( ( R e. Grp /\ ( I .x. y ) e. ( Base ` R ) /\ ( .1. .x. y ) e. ( Base ` R ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. <-> ( I .x. y ) = ( .1. .x. y ) ) ) | 
						
							| 50 | 35 41 47 49 | syl3anc |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. <-> ( I .x. y ) = ( .1. .x. y ) ) ) | 
						
							| 51 | 19 2 48 18 39 45 26 | ringsubdir |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) .x. y ) = ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) ) | 
						
							| 52 | 51 | eqeq1d |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. ) ) | 
						
							| 53 |  | simpl1 |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Domn ) | 
						
							| 54 | 34 38 44 | 3jca |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) | 
						
							| 56 | 19 48 | grpsubcl |  |-  ( ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( I ( -g ` R ) .1. ) e. ( Base ` R ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( I ( -g ` R ) .1. ) e. ( Base ` R ) ) | 
						
							| 58 | 19 2 4 | domneq0 |  |-  ( ( R e. Domn /\ ( I ( -g ` R ) .1. ) e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) ) ) | 
						
							| 59 | 53 57 26 58 | syl3anc |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) ) ) | 
						
							| 60 | 19 4 48 | grpsubeq0 |  |-  ( ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( ( I ( -g ` R ) .1. ) = .0. <-> I = .1. ) ) | 
						
							| 61 | 55 60 | syl |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) = .0. <-> I = .1. ) ) | 
						
							| 62 | 61 | biimpd |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) = .0. -> I = .1. ) ) | 
						
							| 63 |  | eqneqall |  |-  ( y = .0. -> ( y =/= .0. -> I = .1. ) ) | 
						
							| 64 | 63 | com12 |  |-  ( y =/= .0. -> ( y = .0. -> I = .1. ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( y e. U /\ y =/= .0. ) -> ( y = .0. -> I = .1. ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( y = .0. -> I = .1. ) ) | 
						
							| 67 | 62 66 | jaod |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) -> I = .1. ) ) | 
						
							| 68 | 59 67 | sylbid |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. -> I = .1. ) ) | 
						
							| 69 | 52 68 | sylbird |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. -> I = .1. ) ) | 
						
							| 70 | 50 69 | sylbird |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I .x. y ) = ( .1. .x. y ) -> I = .1. ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = ( .1. .x. y ) -> I = .1. ) ) | 
						
							| 72 | 31 71 | sylbid |  |-  ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = y -> I = .1. ) ) | 
						
							| 73 | 28 72 | mpdan |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I .x. y ) = y -> I = .1. ) ) | 
						
							| 74 | 73 | ex |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( ( y e. U /\ y =/= .0. ) -> ( ( I .x. y ) = y -> I = .1. ) ) ) | 
						
							| 75 | 74 | com13 |  |-  ( ( I .x. y ) = y -> ( ( y e. U /\ y =/= .0. ) -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) | 
						
							| 76 | 75 | expd |  |-  ( ( I .x. y ) = y -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( I .x. y ) = y /\ ( y .x. I ) = y ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) | 
						
							| 78 | 17 77 | syl |  |-  ( ( y e. U /\ A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) | 
						
							| 79 | 78 | ex |  |-  ( y e. U -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) ) | 
						
							| 80 | 79 | pm2.43b |  |-  ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) | 
						
							| 81 | 80 | com14 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( y e. U -> ( y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ y e. U ) -> ( y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) | 
						
							| 83 | 82 | rexlimdva |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( E. y e. U y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) | 
						
							| 84 | 10 83 | mpd |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) |