| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidldomn1.l |
|- L = ( LIdeal ` R ) |
| 2 |
|
lidldomn1.t |
|- .x. = ( .r ` R ) |
| 3 |
|
lidldomn1.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
lidldomn1.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> R e. Ring ) |
| 7 |
|
simp2l |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U e. L ) |
| 8 |
|
simp2r |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U =/= { .0. } ) |
| 9 |
1 4
|
lidlnz |
|- ( ( R e. Ring /\ U e. L /\ U =/= { .0. } ) -> E. y e. U y =/= .0. ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> E. y e. U y =/= .0. ) |
| 11 |
|
oveq2 |
|- ( x = y -> ( I .x. x ) = ( I .x. y ) ) |
| 12 |
|
id |
|- ( x = y -> x = y ) |
| 13 |
11 12
|
eqeq12d |
|- ( x = y -> ( ( I .x. x ) = x <-> ( I .x. y ) = y ) ) |
| 14 |
|
oveq1 |
|- ( x = y -> ( x .x. I ) = ( y .x. I ) ) |
| 15 |
14 12
|
eqeq12d |
|- ( x = y -> ( ( x .x. I ) = x <-> ( y .x. I ) = y ) ) |
| 16 |
13 15
|
anbi12d |
|- ( x = y -> ( ( ( I .x. x ) = x /\ ( x .x. I ) = x ) <-> ( ( I .x. y ) = y /\ ( y .x. I ) = y ) ) ) |
| 17 |
16
|
rspcva |
|- ( ( y e. U /\ A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) -> ( ( I .x. y ) = y /\ ( y .x. I ) = y ) ) |
| 18 |
6
|
adantr |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Ring ) |
| 19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 20 |
19 1
|
lidlss |
|- ( U e. L -> U C_ ( Base ` R ) ) |
| 21 |
20
|
adantr |
|- ( ( U e. L /\ U =/= { .0. } ) -> U C_ ( Base ` R ) ) |
| 22 |
21
|
3ad2ant2 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> U C_ ( Base ` R ) ) |
| 23 |
22
|
sseld |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( y e. U -> y e. ( Base ` R ) ) ) |
| 24 |
23
|
com12 |
|- ( y e. U -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> y e. ( Base ` R ) ) ) |
| 25 |
24
|
adantr |
|- ( ( y e. U /\ y =/= .0. ) -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> y e. ( Base ` R ) ) ) |
| 26 |
25
|
impcom |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> y e. ( Base ` R ) ) |
| 27 |
19 2 3
|
ringlidm |
|- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( .1. .x. y ) = y ) |
| 28 |
18 26 27
|
syl2anc |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( .1. .x. y ) = y ) |
| 29 |
|
eqeq2 |
|- ( y = ( .1. .x. y ) -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) |
| 30 |
29
|
eqcoms |
|- ( ( .1. .x. y ) = y -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = y <-> ( I .x. y ) = ( .1. .x. y ) ) ) |
| 32 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 33 |
5 32
|
syl |
|- ( R e. Domn -> R e. Grp ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> R e. Grp ) |
| 35 |
34
|
adantr |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Grp ) |
| 36 |
21
|
sseld |
|- ( ( U e. L /\ U =/= { .0. } ) -> ( I e. U -> I e. ( Base ` R ) ) ) |
| 37 |
36
|
a1i |
|- ( R e. Domn -> ( ( U e. L /\ U =/= { .0. } ) -> ( I e. U -> I e. ( Base ` R ) ) ) ) |
| 38 |
37
|
3imp |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I e. ( Base ` R ) ) |
| 39 |
38
|
adantr |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> I e. ( Base ` R ) ) |
| 40 |
19 2
|
ringcl |
|- ( ( R e. Ring /\ I e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( I .x. y ) e. ( Base ` R ) ) |
| 41 |
18 39 26 40
|
syl3anc |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( I .x. y ) e. ( Base ` R ) ) |
| 42 |
19 3
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 43 |
5 42
|
syl |
|- ( R e. Domn -> .1. e. ( Base ` R ) ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> .1. e. ( Base ` R ) ) |
| 45 |
44
|
adantr |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> .1. e. ( Base ` R ) ) |
| 46 |
19 2
|
ringcl |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( .1. .x. y ) e. ( Base ` R ) ) |
| 47 |
18 45 26 46
|
syl3anc |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( .1. .x. y ) e. ( Base ` R ) ) |
| 48 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 49 |
19 4 48
|
grpsubeq0 |
|- ( ( R e. Grp /\ ( I .x. y ) e. ( Base ` R ) /\ ( .1. .x. y ) e. ( Base ` R ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. <-> ( I .x. y ) = ( .1. .x. y ) ) ) |
| 50 |
35 41 47 49
|
syl3anc |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. <-> ( I .x. y ) = ( .1. .x. y ) ) ) |
| 51 |
19 2 48 18 39 45 26
|
ringsubdir |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) .x. y ) = ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) ) |
| 52 |
51
|
eqeq1d |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. ) ) |
| 53 |
|
simpl1 |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> R e. Domn ) |
| 54 |
34 38 44
|
3jca |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) |
| 56 |
19 48
|
grpsubcl |
|- ( ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( I ( -g ` R ) .1. ) e. ( Base ` R ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( I ( -g ` R ) .1. ) e. ( Base ` R ) ) |
| 58 |
19 2 4
|
domneq0 |
|- ( ( R e. Domn /\ ( I ( -g ` R ) .1. ) e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) ) ) |
| 59 |
53 57 26 58
|
syl3anc |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. <-> ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) ) ) |
| 60 |
19 4 48
|
grpsubeq0 |
|- ( ( R e. Grp /\ I e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( ( I ( -g ` R ) .1. ) = .0. <-> I = .1. ) ) |
| 61 |
55 60
|
syl |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) = .0. <-> I = .1. ) ) |
| 62 |
61
|
biimpd |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I ( -g ` R ) .1. ) = .0. -> I = .1. ) ) |
| 63 |
|
eqneqall |
|- ( y = .0. -> ( y =/= .0. -> I = .1. ) ) |
| 64 |
63
|
com12 |
|- ( y =/= .0. -> ( y = .0. -> I = .1. ) ) |
| 65 |
64
|
adantl |
|- ( ( y e. U /\ y =/= .0. ) -> ( y = .0. -> I = .1. ) ) |
| 66 |
65
|
adantl |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( y = .0. -> I = .1. ) ) |
| 67 |
62 66
|
jaod |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) = .0. \/ y = .0. ) -> I = .1. ) ) |
| 68 |
59 67
|
sylbid |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I ( -g ` R ) .1. ) .x. y ) = .0. -> I = .1. ) ) |
| 69 |
52 68
|
sylbird |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( ( I .x. y ) ( -g ` R ) ( .1. .x. y ) ) = .0. -> I = .1. ) ) |
| 70 |
50 69
|
sylbird |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I .x. y ) = ( .1. .x. y ) -> I = .1. ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = ( .1. .x. y ) -> I = .1. ) ) |
| 72 |
31 71
|
sylbid |
|- ( ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) /\ ( .1. .x. y ) = y ) -> ( ( I .x. y ) = y -> I = .1. ) ) |
| 73 |
28 72
|
mpdan |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ ( y e. U /\ y =/= .0. ) ) -> ( ( I .x. y ) = y -> I = .1. ) ) |
| 74 |
73
|
ex |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( ( y e. U /\ y =/= .0. ) -> ( ( I .x. y ) = y -> I = .1. ) ) ) |
| 75 |
74
|
com13 |
|- ( ( I .x. y ) = y -> ( ( y e. U /\ y =/= .0. ) -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) |
| 76 |
75
|
expd |
|- ( ( I .x. y ) = y -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) |
| 77 |
76
|
adantr |
|- ( ( ( I .x. y ) = y /\ ( y .x. I ) = y ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) |
| 78 |
17 77
|
syl |
|- ( ( y e. U /\ A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) |
| 79 |
78
|
ex |
|- ( y e. U -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) ) |
| 80 |
79
|
pm2.43b |
|- ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> ( y e. U -> ( y =/= .0. -> ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> I = .1. ) ) ) ) |
| 81 |
80
|
com14 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( y e. U -> ( y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) ) |
| 82 |
81
|
imp |
|- ( ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) /\ y e. U ) -> ( y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) |
| 83 |
82
|
rexlimdva |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( E. y e. U y =/= .0. -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) ) |
| 84 |
10 83
|
mpd |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } ) /\ I e. U ) -> ( A. x e. U ( ( I .x. x ) = x /\ ( x .x. I ) = x ) -> I = .1. ) ) |