Metamath Proof Explorer


Theorem 2zrng

Description: The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm . (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zlidl.u
|- U = ( LIdeal ` ZZring )
2zrng.r
|- R = ( ZZring |`s E )
Assertion 2zrng
|- R e. Rng

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zlidl.u
 |-  U = ( LIdeal ` ZZring )
3 2zrng.r
 |-  R = ( ZZring |`s E )
4 zringring
 |-  ZZring e. Ring
5 1 2 2zlidl
 |-  E e. U
6 2 3 lidlrng
 |-  ( ( ZZring e. Ring /\ E e. U ) -> R e. Rng )
7 4 5 6 mp2an
 |-  R e. Rng