Metamath Proof Explorer


Theorem oddinmgm

Description: The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl , and even a non-unital ring, see 2zrng . (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
oddinmgm.r
|- M = ( CCfld |`s O )
Assertion oddinmgm
|- M e/ Mgm

Proof

Step Hyp Ref Expression
1 oddinmgm.e
 |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
2 oddinmgm.r
 |-  M = ( CCfld |`s O )
3 1 1odd
 |-  1 e. O
4 1 2nodd
 |-  2 e/ O
5 1p1e2
 |-  ( 1 + 1 ) = 2
6 neleq1
 |-  ( ( 1 + 1 ) = 2 -> ( ( 1 + 1 ) e/ O <-> 2 e/ O ) )
7 5 6 ax-mp
 |-  ( ( 1 + 1 ) e/ O <-> 2 e/ O )
8 4 7 mpbir
 |-  ( 1 + 1 ) e/ O
9 1 2 oddibas
 |-  O = ( Base ` M )
10 1 2 oddiadd
 |-  + = ( +g ` M )
11 9 10 isnmgm
 |-  ( ( 1 e. O /\ 1 e. O /\ ( 1 + 1 ) e/ O ) -> M e/ Mgm )
12 3 3 8 11 mp3an
 |-  M e/ Mgm